脚本专栏 
首页 > 脚本专栏 > 浏览文章

从Pytorch模型pth文件中读取参数成numpy矩阵的操作

(编辑:jimmy 日期: 2024/11/16 浏览:3 次 )

目的:

把训练好的pth模型参数提取出来,然后用其他方式部署到边缘设备。

Pytorch给了很方便的读取参数接口:

nn.Module.parameters()

直接看demo:

from torchvision.models.alexnet import alexnet 
model = alexnet(pretrained=True).eval().cuda()
parameters = model.parameters()
for p in parameters:
  numpy_para = p.detach().cpu().numpy()
  print(type(numpy_para))
  print(numpy_para.shape)

上面得到的numpy_para就是numpy参数了~

Note:

model.parameters()是以一个生成器的形式迭代返回每一层的参数。所以用for循环读取到各层的参数,循环次数就表示层数。

而每一层的参数都是torch.nn.parameter.Parameter类型,是Tensor的子类,所以直接用tensor转numpy(即p.detach().cpu().numpy())的方法就可以直接转成numpy矩阵。

方便又好用,爆赞~

补充:pytorch训练好的.pth模型转换为.pt

将python训练好的.pth文件转为.pt

import torch
import torchvision
from unet import UNet
model = UNet(3, 2)#自己定义的网络模型
model.load_state_dict(torch.load("best_weights.pth"))#保存的训练模型
model.eval()#切换到eval()
example = torch.rand(1, 3, 320, 480)#生成一个随机输入维度的输入
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("model.pt")

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

上一篇:HTC基础知识
下一篇:HTC教程
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap