解决pytorch 数据类型报错的问题
pytorch报错:
RuntimeError: Expected object of type Variable[torch.LongTensor] but found type Variable[torch.cuda.ByteTensor] for argument #1 ‘argument1'
解决方法:
pytorch框架在存储labels时,采用LongTensor来存储,所以在一开始dataset返回label时,就要返回与LongTensor对应的数据类型,即numpy.int64
补充:使用pytorch遇到的各种问题及解决方案
自己在使用pytorch遇到的各种问题及解决方案:
RuntimeError: Expected object of scalar type Float but got scalar type Double for argument #4 'mat1'
RuntimeError: The size of tensor a (12800) must match the size of tensor b (100) at non-singleton dimension 0
输入维度为12800,输出维度为100,输入输出的维度不一致,正确的例子如下:
inputs = [(1,2,3), (2,3,4)] outsputs = [4, 5]
将输入输出的长度改为一致
取tensor的第一个元素
XXX.item() # XXX为tensor对象
tensor中的元素改变数据类型
# 常常因为数据类型出错,要修改数据类型 XXX.int() XXX.float()
补充:Pytorch的Dataloader报错:TypeError: batch must contain tensors, numbers, dicts or lists
具体报错:
TypeError: batch must contain tensors, numbers, dicts or lists; found <class 'PIL.Image.Image'>
loader的代码:
dataloader=torch.utils.data.DataLoader(dataset,batch_size=1,shuffle=True)
表面上看这个代码没有问题,实际上问题出在了dataloader机制的要求上,dataloader要求接收的是一个tensor,而我的dataset没有做transform,所以dataset的getitem函数返回的是一个PIL的Image对象,所以就会报错
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
下一篇:python上下文管理的使用场景实例讲解