脚本专栏 
首页 > 脚本专栏 > 浏览文章

python爬虫如何解决图片验证码

(编辑:jimmy 日期: 2024/11/16 浏览:3 次 )

之前刚开始做爬虫的时候遇到过登录验证码问题,看过很多帖子都没有解决我的问题,发现大多数帖子都是治标不治本,于是想分享一下自己的解决方案。本次采用的网站是古诗文网,使用百度API,因为百度API免费!免费!免费!适合自己学习的时候使用。如果还没有使用过百度API识别验证码的朋友可以看一下我的这个帖子。
以下案例采用的时古诗文网:登录古诗文网,

1、selenium处理图片验证码

先定位到验证码图片,在获取验证码图片在页面中的位置,使用save_screenshot截取页面,再根据图片的位置去截取验证码,最后通过接口识别文字获取验证码,直接上代码:

element = driver.find_element_by_id('imgCode') # 定位验证码图片
# 获取验证码图片在网页中的位置
left = int(element.location['x'])  # 获取图片左上角坐标x
top = int(element.location['y'])  # 获取图片左上角y
right = int(element.location['x'] + element.size['width'])    # 获取图片右下角x
bottom = int(element.location['y'] + element.size['height'])  # 获取图片右下角y

# 通过Image处理图像
path = current_dir + str(random.random()) + '.png'  # 生成随机文件名
driver.save_screenshot(path)    # 截取当前窗口并保存图片
im = Image.open(path)        # 打开图片
im = im.crop((left, top, right, bottom))  # 截图验证码
im.save(path)    # 保存验证码图片

# 使用百度API识别验证码
def get_code():
  client = AipOcr(APP_ID, API_KEY, SECRET_KEY)  # 百度API文档中提供的方法识别文字

  # 由于我处理的验证码图片没有填多的线条,所以直接采用灰度是验证码数字更加清晰,具体的处理方式可根据验证码的实际情况而定
  im = Image.open(path)
  # 转换为灰度图像
  im = im.convert('L')
  im.save(path)

  # 读取图片,应为百度API中提供的方法参数只能是字节流
  with open(path, 'rb')as f:
    image = f.read()
  # 使用API中提供的方法识别验证码并返回验证码
  code = client.basicGeneral(image)

  print(code['words_result'][0]['words']) # {'words_result': [{'words': '4TBiD ', 'location': {'top': 1, 'left': 6, 'width': 43, 'height': 13}}], 'log_id': 1358288307112378368, 'words_result_num': 1}
  return code['words_result'][0]['words']

2、使用requests请求验证码

这里用到了会话机制,对于初学者来说可能不太了解,简单说一下会话机制的作用,会话就是用来保存你之前请求的cookie,让浏览器知道你之前就在这里,这样浏览器就不会认为你重新来到这里,从而刷新验证码,这样就可以带着我们获取的验证码去登录了。

conn = requests.Sessoin(  # 创建会话
resp = conn.get('https://so.gushiwen.cn/user/login.aspx"imgCode"]/@src').get() # 获取图片的路由
img = conn.get(img_url)  # 保持会话请求
filename = str(random.random()) + '.png'
with open(filename, 'wb')as f:
  f.write(img.content)
# 为了后面的调用接口识别不报图片格式错误,进行一次图片转换
im = Image.open(filename)
im.save(filename)
# 使用二进制方式读取图片
with open(filename, 'rb')as f:
image = f.read()
data = client.handwriting(image)  # diao'yong
# 使用API中提供的方法识别验证码并返回验证码
code = client.basicGeneral(image)
code = code['words_result'][0]['words']

selenium源码

# -* coding: utf-8 *-

import time
import random
from PIL import Image
from aip import AipOcr
from selenium.webdriver import Chrome

# 百度API参数
APP_ID = '23647800'
API_KEY = 'n95KOQgVuOMoAP72qZZo7uoN'
SECRET_KEY = '7yhyGglHUsY52DD8kf4w0Qjnxum07hMK'
client = AipOcr(APP_ID, API_KEY, SECRET_KEY) # 调用API接口


def scrapy(username, password):
  """
  :param username:  用户名
  :param password:  密码
  """
  driver = Chrome()
  driver.get('https://so.gushiwen.cn/user/login.aspx')
  driver.find_element_by_id('email').send_keys(username) # 输入账号
  driver.find_element_by_id('pwd').send_keys(password)  # 输入密码

  element = driver.find_element_by_id('imgCode') # 定位验证码图片
  # 获取验证码图片在网页中的位置
  left = int(element.location['x']) # 获取图片左上角坐标x
  top = int(element.location['y']) # 获取图片左上角y
  right = int(element.location['x'] + element.size['width']) # 获取图片右下角x
  bottom = int(element.location['y'] + element.size['height']) # 获取图片右下角y

  # 通过Image处理图像
  filename = str(random.random()) + '.png' # 生成随机文件名
  driver.save_screenshot(filename) # 截取当前窗口并保存图片
  im = Image.open(filename) # 打开图片
  im = im.crop((left, top, right, bottom)) # 截图验证码
  im.save(filename) # 保存验证码图片
  # 由于我处理的验证码图片没有填多的线条,所以直接采用灰度是验证码数字更加清晰,具体的处理方式可根据验证码的实际情况而定
  im = Image.open(filename)
  # 转换为灰度图像
  im = im.convert('L')
  im.save(filename)
  # 读取图片,应为百度API中提供的方法参数只能是字节流
  with open(filename, 'rb')as f:
    image = f.read()
  # 使用API中提供的方法识别验证码并返回验证码
  data = client.basicGeneral(image)
  try:
    code = data['words_result'][0]['words']
  except:
    return data['error_msg']

  driver.find_element_by_id('code').send_keys(code)  # 输入验证码
  driver.find_element_by_id('denglu').click()   # 点击登录
  time.sleep(1000)  # 为了看清登录,等待1000秒


if __name__ == '__main__':
  print(scrapy(username, password)) # 传入你在古诗文网注册的账号密码

requests源码

# -* coding: utf-8 *-
import os
import random
import re
import requests
from PIL import Image
from aip import AipOcr
from scrapy import Selector

headers = {
  'referer': 'https://so.gushiwen.cn/user/login.aspx',
  'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.146 Safari/537.36'
}

# 百度API参数
APP_ID = '23647800'
API_KEY = 'n95KOQgVuOMoAP72qZZo7uoN'
SECRET_KEY = '7yhyGglHUsY52DD8kf4w0Qjnxum07hMK'

def scrapy(username, password):
  """
  :param username:  用户名
  :param password:  密码
  """
  client = AipOcr(APP_ID, API_KEY, SECRET_KEY) # 调用API接口
  conn = requests.Session() # 创建会话
  resp = conn.get('https://so.gushiwen.cn/user/login.aspx', headers=headers) # 获取登录页面
  selector = Selector(text=resp.text)
  __VIEWSTATE = selector.xpath('.//input[@id="__VIEWSTATE"]/@value').get()
  __VIEWSTATEGENERATOR = selector.xpath('.//input[@id="__VIEWSTATEGENERATOR"]/@value').get()
  img_url = 'https://so.gushiwen.cn/' + selector.xpath('.//img[@id="imgCode"]/@src').get() # 获取图片的路由
  img = conn.get(img_url, headers=headers) # 获取图片路由
  # 保存图片
  filename = str(random.random()) + '.png' # 随机生成文件名, 图片格式不能为jpg,API不支持jpg格式的识别
  with open(filename, 'wb')as f:
    f.write(img.content)
   # 由于我处理的验证码图片没有填多的线条,所以直接采用灰度是验证码数字更加清晰,具体的处理方式可根据验证码的实际情况而定
  im = Image.open(filename)
  # 转换为灰度图像
  im = im.convert('L')
  im.save(filename)
  # 使用二进制方式读取图片
  with open(filename, 'rb')as f:
    image = f.read()
  # # 标准识别, 每天免费50000次
  # data = client.basicGeneral(image)
  # 精确识别,每天免费500次
  data = client.handwriting(image)
  # 捕获一下接口识别当中的错误,可参照文档查看报错原因
  try:
    code = data['words_result'][0]['words']
  except:
    return data['error_msg']
  form_data = {
    '__VIEWSTATE': __VIEWSTATE,
    '__VIEWSTATEGENERATOR': __VIEWSTATEGENERATOR,
    'from': '',
    'email': username,
    'pwd': password,
    'code':cod,
    'denglu': '登录'
  }
  # 登录
  html = conn.post('https://so.gushiwen.cn/user/login.aspx', headers=headers, data=form_data).text
  # 获取登录标志位
  login_flag = re.findall("alert\('(.*",html)[0] if re.findall("alert\('(.*",html) else ''
  if not login_flag:
    return '登录成功!'
  elif '验证码有误!' in login_flag:
    return "验证码错误"


if __name__ == '__main__':
  print(scrapy(username, password))

以上就是python爬虫如何解决图片验证码的详细内容,更多关于python 解决图片验证码的资料请关注其它相关文章!

上一篇:Python3+Appium安装及Appium模拟微信登录方法详解
下一篇:Python3使用Selenium获取session和token方法详解
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap