脚本专栏 
首页 > 脚本专栏 > 浏览文章

详解Pytorch显存动态分配规律探索

(编辑:jimmy 日期: 2024/11/16 浏览:3 次 )

  下面通过实验来探索Pytorch分配显存的方式。

实验显存到主存

  我使用VSCode的jupyter来进行实验,首先只导入pytorch,代码如下:

import torch

  打开任务管理器查看主存与显存情况。情况分别如下:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  在显存中创建1GB的张量,赋值给a,代码如下:

a = torch.zeros([256,1024,1024],device= 'cpu')

  查看主存与显存情况:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  可以看到主存与显存都变大了,而且显存不止变大了1G,多出来的内存是pytorch运行所需的一些配置变量,我们这里忽略。

  再次在显存中创建一个1GB的张量,赋值给b,代码如下:

b = torch.zeros([256,1024,1024],device= 'cpu')

  查看主显存情况:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  这次主存大小没变,显存变高了1GB,这是合情合理的。然后我们将b移动到主存中,代码如下:

b = b.to('cpu') 

  查看主显存情况:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  发现主存是变高了1GB,显存却只变小了0.1GB,好像只是将显存张量复制到主存一样。实际上,pytorch的确是复制了一份张量到主存中,但它也对显存中这个张量的移动进行了记录。我们接着执行以下代码,再创建1GB的张量赋值给c:

c = torch.zeros([256,1024,1024],device= 'cuda')

  查看主显存情况:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  发现只有显存大小变大了0.1GB,这说明,Pytorch的确记录了显存中张量的移动,只是没有立即将显存空间释放,它选择在下一次创建新变量时覆盖这个位置。接下来,我们重复执行上面这行代码:

c = torch.zeros([256,1024,1024],device= 'cuda') 

  主显存情况如下:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  明明我们把张量c给覆盖了,显存内容却变大了,这是为什么呢?实际上,Pytorch在执行这句代码时,是首先找到可使用的显存位置,创建这1GB的张量,然后再赋值给c。但因为在新创建这个张量时,原本的c依然占有1GB的显存,pytorch只能先调取另外1GB显存来创建这个张量,再将这个张量赋值给c。这样一来,原本的那个c所在的显存内容就空出来了,但和前面说的一样,pytorch并不会立即释放这里的显存,而等待下一次的覆盖,所以显存大小并没有减小。

  我们再创建1GB的d张量,就可以验证上面的猜想,代码如下:

d = torch.zeros([256,1024,1024],device= 'cuda') 

  主显存情况如下:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  显存大小并没有变,就是因为pytorch将新的张量创建在了上一步c空出来的位置,然后再赋值给了d。另外,删除变量操作也同样不会立即释放显存:

del d

  主显存情况:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  显存没有变化,同样是等待下一次的覆盖。

主存到显存

  接着上面的实验,我们创建直接在主存创建1GB的张量并赋值给e,代码如下:

e = torch.zeros([256,1024,1024],device= 'cpu')

  主显存情况如下:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  主存变大1GB,合情合理。然后将e移动到显存,代码如下:

e = e.to('cuda')

  主显存情况如下:

详解Pytorch显存动态分配规律探索

详解Pytorch显存动态分配规律探索

  主存变小1GB,显存没变是因为上面张量d被删除没有被覆盖,合情合理。说明主存的释放是立即执行的。

总结

  通过上面的实验,我们了解到,pytorch不会立即释放显存中失效变量的内存,它会以覆盖的方式利用显存中的可用空间。另外,如果要重置显存中的某个规模较大的张量,最好先将它移动到主存中,或是直接删除,再创建新值,否则就需要两倍的内存来实现这个操作,就有可能出现显存不够用的情况。

  实验代码汇总如下:

#%% 
import torch
#%%
a = torch.zeros([256,1024,1024],device= 'cuda') 
#%%
b = torch.zeros([256,1024,1024],device= 'cuda') 
#%%
b = b.to('cpu')
#%%
c = torch.zeros([256,1024,1024],device= 'cuda') 
#%%
c = torch.zeros([256,1024,1024],device= 'cuda') 
#%% 
d = torch.zeros([256,1024,1024],device= 'cuda') 
#%%
del d 
#%% 
e = torch.zeros([256,1024,1024],device= 'cpu') 
#%%
e = e.to('cuda')
上一篇:Python实现列表索引批量删除的5种方法
下一篇:Python 列表反转显示的四种方法
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap