脚本专栏 
首页 > 脚本专栏 > 浏览文章

python tqdm实现进度条的示例代码

(编辑:jimmy 日期: 2024/11/17 浏览:3 次 )

一、前言

\quad \quad 有时候在使用Python处理比较耗时操作的时候,为了便于观察处理进度,这时候就需要通过进度条将处理情况进行可视化展示,以便我们能够及时了解情况。这对于第三方库非常丰富的Python来说,想要实现这一功能并不是什么难事。
\quad \quad tqdm就能非常完美的支持和解决这些问题,可以实时输出处理进度而且占用的CPU资源非常少,支持循环处理多进程递归处理、还可以结合linux的命令来查看处理情况,等进度展示。

我们先来看一下进度条的效果。

from tqdm import tqdm
for i in tqdm(range(int(9e6))):
  pass

python tqdm实现进度条的示例代码

可以看到,当我们的代码的运行需要较长时间时,进度条可以很好的帮助我们了解整个代码的运行进度。

1、安装

tqdm的安装十分简单,只需要通过pip或conda就可以安装。

2、pip安装

pip install tqdm

3、conda安装

conda install -c conda-forge tqdm

二、tqdm相关操作

1、迭代对象处理

对于可以迭代的对象都可以使用下面这种方式,来实现可视化进度,非常方便。

from tqdm import tqdm
import time
for i in tqdm(range(100)):
  time.sleep(0.1)
  pass
100%|████████████████████████████████████████████████████████████████████████████████| 100/100 [00:10<00:00, 9.88it/s]

2、观察处理的数据

通过tqdm提供的set_description方法可以实时查看每次处理的数据。

from tqdm import tqdm
import time

pbar = tqdm(["A","B","C","D","E","F"])
for c in pbar:
  time.sleep(1)
  pbar.set_description("Processing %s"%c)

python tqdm实现进度条的示例代码

3、pandas中使用tqdm

pandas中对大量数据进行相关操作或者遍历表格的行列时,我们可以使用tqdm来了解代码运行情况。

import pandas as pd
df = pd.DataFrame({
  'Month':[1,2,3,4,5,2,3,4,5,1,2,3,4],
  'Name':['张三','张三','张三','张三','张三','李四','李四','李四','李四','王五','王五','王五','王五'],
  'Sex':['男','男','女','女','女','男','男','男','男','女','女','女','女']})
for i in tqdm(['Month','Name','Sex']):
  pass
100%|██████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 4707.41it/s]

4、多进程进度条

在使用多进程或者嵌套循环处理任务的时候,我们通过tqdm可以实时查看每一个进程任务的处理情况

from tqdm import tqdm
import time
for i in tqdm(range(5), ascii=True,desc="1st process"):
  for j in tqdm(range(5), ascii=True,desc="2nd process"):
    time.sleep(0.01)
1st process:  0%|                                        | 0/5 [00:00<"htmlcode">
from tqdm import tqdm
import time
#total参数设置进度条的总长度为100
with tqdm(total=100) as pbar:
  for i in range(100):
    time.sleep(0.05)
    #每次更新进度条的长度为1
    pbar.update(1)

python tqdm实现进度条的示例代码

除了上述方法之外,我们还能通过另外一种方法来实现操作。

from tqdm import tqdm
import time
#total参数设置进度条的总长度为100
pbar = tqdm(total=100)
for i in range(100):
  time.sleep(0.05)
  #每次更新进度条的长度为1
  pbar.update(1)
#关闭占用的资源
pbar.close()

python tqdm实现进度条的示例代码

另外,我们还能通过set_descriptionset_postfix方法设置进度条显示信息。

from tqdm import trange
from random import random,randint
import time

with trange(100) as t:
  for i in t:
    #设置进度条左边显示的信息
    #注意:代码中的HVAE是可以手动换成其他内容的
    t.set_description("GEN %i"%i)
    #设置进度条右边显示的信息  
    #注意:此处代码中的gen lr lst是可以手动换成其他内容的
    t.set_postfix(loss=random(),gen=randint(1,999),lr="h",lst=[1,2])
    time.sleep(0.1)
GEN 99: 100%|███████████████████████████████| 100/100 [00:10<00:00, 9.77it/s, gen=190, loss=0.00811, lr=h, lst=[1, 2]]

令人震惊的是,当我们将进度条显示的信息设置中文时,竟然不会出现乱码!!!!

from tqdm import trange
from random import random,randint
import time

with trange(100) as t:
  for i in t:
    #设置进度条左边显示的信息
    t.set_description("进度 %i"%i)
    #设置进度条右边显示的信息  
    t.set_postfix(loss=random(),随机=randint(1,999),名字="h",列表=[1,2])
    time.sleep(0.1)
进度 99: 100%|████████████████████████████████████| 100/100 [00:10<00:00, 9.75it/s, loss=0.975, 列表=[1, 2], 名字=h, 随机=469]

三、其他相关操作

"htmlcode">

from tqdm import tqdm,trange
import time
for i in trange(100):
  time.sleep(0.1)
  pass
100%|████████████████████████████████████████████████████████████████████████████████| 100/100 [00:10<00:00, 9.90it/s]

2、当我们在jupyter notebook中使用进度条时,我们会发现整个进度条十分的难看,而在可能会出现多条进度条的情况,这样会让我们的代码显得十分的难看,这显然不是我们想要得到的结果。

我们先来感受一下,这种丑丑的运行结果。

from tqdm import tqdm
for i in tqdm(range(int(200))):
  print('tqdm',end=' ')
 0%|                                             | 0/200 [00:00<"htmlcode">
from tqdm import tqdm_notebook
import time
for i in tqdm_notebook(range(100),desc='demo:'):
  time.sleep(0.01)
  print('tqdm',end=' ')

python tqdm实现进度条的示例代码

可以看到,整个运行结果立刻变得美观而又清晰了!

​ \quad tqdm在阿拉伯语中的意思是“进展”,是python中一个快速、扩展性强的进度条工具库,能让我们了解代码的运行进度,也能让我们的运行结果看起来显得更加美观而又高大上!! 喜欢的小伙伴赶紧用起来吧!!

上一篇:Django Admin后台模型列表页面如何添加自定义操作按钮
下一篇:Django启动时找不到mysqlclient问题解决方案
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。