脚本专栏 
首页 > 脚本专栏 > 浏览文章

详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系

(编辑:jimmy 日期: 2024/11/17 浏览:3 次 )

参考官网地址:

Windows端:https://tensorflow.google.cn/install/source_windows

CPU

Version Python version Compiler Build tools tensorflow-1.11.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.10.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.9.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.8.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.7.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.6.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.5.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.4.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.3.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.2.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.1.0 3.5 MSVC 2015 update 3 Cmake v3.6.3 tensorflow-1.0.0 3.5 MSVC 2015 update 3 Cmake v3.6.3

GPU

Version Python version Compiler Build tools cuDNN CUDA tensorflow_gpu-1.11.0 3.5-3.6 MSVC 2015 update 3 Bazel 0.15.0 7 9 tensorflow_gpu-1.10.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9 tensorflow_gpu-1.9.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9 tensorflow_gpu-1.8.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9 tensorflow_gpu-1.7.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9 tensorflow_gpu-1.6.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9 tensorflow_gpu-1.5.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 7 9 tensorflow_gpu-1.4.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 6 8 tensorflow_gpu-1.3.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 6 8 tensorflow_gpu-1.2.0 3.5-3.6 MSVC 2015 update 3 Cmake v3.6.3 5.1 8 tensorflow_gpu-1.1.0 3.5 MSVC 2015 update 3 Cmake v3.6.3 5.1 8 tensorflow_gpu-1.0.0 3.5 MSVC 2015 update 3 Cmake v3.6.3 5.1 8

Linux端:https://tensorflow.google.cn/install/source

Linux

Version Python version Compiler Build tools tensorflow-1.11.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 tensorflow-1.10.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 tensorflow-1.9.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.11.0 tensorflow-1.8.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0 tensorflow-1.7.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0 tensorflow-1.6.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 tensorflow-1.5.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0 tensorflow-1.4.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4 tensorflow-1.3.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 tensorflow-1.2.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 tensorflow-1.1.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 tensorflow-1.0.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2

Version Python version Compiler Build tools cuDNN CUDA tensorflow_gpu-1.11.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9 tensorflow_gpu-1.10.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9 tensorflow_gpu-1.9.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.11.0 7 9 tensorflow_gpu-1.8.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.10.0 7 9 tensorflow_gpu-1.7.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9 tensorflow_gpu-1.6.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9 tensorflow_gpu-1.5.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.8.0 7 9 tensorflow_gpu-1.4.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.5.4 6 8 tensorflow_gpu-1.3.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 6 8 tensorflow_gpu-1.2.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.5 5.1 8 tensorflow_gpu-1.1.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8 tensorflow_gpu-1.0.0 2.7, 3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8

macOS

CPU

Version Python version Compiler Build tools tensorflow-1.11.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.15.0 tensorflow-1.10.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.15.0 tensorflow-1.9.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.11.0 tensorflow-1.8.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.10.1 tensorflow-1.7.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.10.1 tensorflow-1.6.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.8.1 tensorflow-1.5.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.8.1 tensorflow-1.4.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.5.4 tensorflow-1.3.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.5 tensorflow-1.2.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.5 tensorflow-1.1.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 tensorflow-1.0.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2

GPU

Version Python version Compiler Build tools cuDNN CUDA tensorflow_gpu-1.1.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 5.1 8 tensorflow_gpu-1.0.0 2.7, 3.3-3.6 Clang from xcode Bazel 0.4.2 5.1 8

tensorflow的CUDA driver version is insufficient for CUDA runtime version 问题解决方案

CUDA driver version is insufficient for CUDA runtime version 翻译过来就是CUDA的驱动程序版本跟CUDA的运行时版本不匹配!

1.CUDA driver version(驱动版本):就是NVIDIA GPU的驱动程序版本;

查看命令:nvidia-smi

详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系

我们看到我的GPU的驱动程序版本是:384.81

2.CUDA runtime version(运行时版本):是在python中安装的cudatoolkit和cudnn程序包的版本

查看命令:pip list

详解Tensorflow不同版本要求与CUDA及CUDNN版本对应关系

python安装的cudatoolkit和cudnn程序包版本是:9.2

3.nvidia 驱动和cuda runtime 版本对应关系

运行时版本   驱动版本
CUDA 9.1     387.xx 
CUDA 9.0     384.xx 
CUDA 8.0     375.xx (GA2) 
CUDA 8.0     367.4x 
CUDA 7.5     352.xx 
CUDA 7.0     346.xx 
CUDA 6.5     340.xx 
CUDA 6.0     331.xx 
CUDA 5.5     319.xx 
CUDA 5.0     304.xx 
CUDA 4.2     295.41 
CUDA 4.1     285.05.33 
CUDA 4.0     270.41.19 
CUDA 3.2     260.19.26 
CUDA 3.1     256.40 
CUDA 3.0     195.36.15

4.解决方案

从驱动和运行时的版本对应关系来看,版本为384.81的驱动程序 对应的 运行时版本是9.0,也就是说我们在python中安装cudatoolkit和cudnn程序包版本9.2是过高了。

因为系统中依赖GPU驱动的程序比较多,一般出现这种情况,我们都是更改cudatoolkit和cudnn程序包的版本。

于是,先卸载python中安装cudatoolkit和cudnn程序包:pip uninstall cudnn ; pip uninstall cudatoolkit

然后安装对应版本的cudatoolkit和cudnn程序包:pip install cudatoolkit=9.0;pip install cudnn

5.为什么会出现这种情况呢:

一般出现这种情况是因为在python中安装tensorflow的gpu版本时,pip会检查tensorflow依赖的其他的包,如果依赖的包没有安装,则会先安装最新版本的依赖包。这时候tensorflow的gpu版本依赖cudatoolkit和cudnn程序包,pip就会安装最新版本的cudatoolkit和cudnn程序包,最终导致gpu驱动版本和cuda运行时版本不匹配。

上一篇:Python 使用生成器代替线程的方法
下一篇:Python爬虫之Spider类用法简单介绍
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap