Matplotlib.pyplot 三维绘图的实现示例
折线图
Axes3D.
plot
(xs,ys,*args,**kwargs)
import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) z = np.linspace(-2, 2, 100) r = z ** 2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) ax.plot(x, y, z, label='parametric curve') ax.legend() plt.show()
散点图
Axes3D.
scatter
(xs,ys,zs=0,zdir='z',s=20,c=None,depthshade=True,*args,**kwargs)
Argument
Description
xs, ys
Positions of data points.
zs
Either an array of the same length as xs and ys or a single value to place all points in the same plane. Default is 0.
zdir
Which direction to use as z (‘x', ‘y' or ‘z') when plotting a 2D set.
s
Size in points^2. It is a scalar or an array of the same length as x and y.
c
A color. c can be a single color format string, or a sequence of color specifications of length N, or a sequence of N numbers to be mapped to colors using the cmap and norm specified via kwargs (see below). Note that c should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA, however, including the case of a single row to specify the same color for all points.
depthshade
Whether or not to shade the scatter markers to give the appearance of depth. Default is True.
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): ''' Helper function to make an array of random numbers having shape (n, ) with each number distributed Uniform(vmin, vmax). ''' return (vmax - vmin) * np.random.rand(n) + vmin fig = plt.figure() ax = fig.add_subplot(111, projection='3d') n = 100 # For each set of style and range settings, plot n random points in the box # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh]. for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]: xs = randrange(n, 23, 32) ys = randrange(n, 0, 100) zs = randrange(n, zlow, zhigh) ax.scatter(xs, ys, zs, c=c, marker=m) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show()
线框图
Axes3D.
plot_wireframe
(X,Y,Z,*args,**kwargs)
Argument
Description
X, Y,
Data values as 2D arrays
Z
rstride
Array row stride (step size), defaults to 1
cstride
Array column stride (step size), defaults to 1
rcount
Use at most this many rows, defaults to 50
ccount
Use at most this many columns, defaults to 50
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Grab some test data. X, Y, Z = axes3d.get_test_data(0.05) # Plot a basic wireframe. ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) plt.show()
表面图
Axes3D.
plot_surface
(X,Y,Z,*args,**kwargs)
Argument
Description
X, Y, Z
Data values as 2D arrays
rstride
Array row stride (step size)
cstride
Array column stride (step size)
rcount
Use at most this many rows, defaults to 50
ccount
Use at most this many columns, defaults to 50
color
Color of the surface patches
cmap
A colormap for the surface patches.
facecolors
Face colors for the individual patches
norm
An instance of Normalize to map values to colors
vmin
Minimum value to map
vmax
Maximum value to map
shade
Whether to shade the facecolors
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import numpy as np fig = plt.figure() ax = fig.gca(projection='3d') # Make data. X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X ** 2 + Y ** 2) Z = np.sin(R) # Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False) # Customize the z axis. ax.set_zlim(-1.01, 1.01) ax.zaxis.set_major_locator(LinearLocator(10)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()
柱状图
Axes3D.
bar
(left,height,zs=0,zdir='z',*args,**kwargs)
Argument
Description
left
The x coordinates of the left sides of the bars.
height
The height of the bars.
zs
Z coordinate of bars, if one value is specified they will all be placed at the same z.
zdir
Which direction to use as z (‘x', ‘y' or ‘z') when plotting a 2D set.
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]): xs = np.arange(20) ys = np.random.rand(20) # You can provide either a single color or an array. To demonstrate this, # the first bar of each set will be colored cyan. cs = [c] * len(xs) cs[0] = 'c' ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show()
箭头图
Axes3D.
quiver
(*args,**kwargs)
Arguments:
X, Y, Z:
The x, y and z coordinates of the arrow locations (default is tail of arrow; see pivot kwarg)
U, V, W:
The x, y and z components of the arrow vectors
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.gca(projection='3d') # Make the grid x, y, z = np.meshgrid(np.arange(-0.8, 1, 0.2), np.arange(-0.8, 1, 0.2), np.arange(-0.8, 1, 0.8)) # Make the direction data for the arrows u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z) v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z) w = (np.sqrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) * np.sin(np.pi * z)) ax.quiver(x, y, z, u, v, w, length=0.1, normalize=True) plt.show()
2D转3D图
from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection='3d') # Plot a sin curve using the x and y axes. x = np.linspace(0, 1, 100) y = np.sin(x * 2 * np.pi) / 2 + 0.5 ax.plot(x, y, zs=0, zdir='z', label='curve in (x,y)') # Plot scatterplot data (20 2D points per colour) on the x and z axes. colors = ('r', 'g', 'b', 'k') x = np.random.sample(20 * len(colors)) y = np.random.sample(20 * len(colors)) labels = np.random.randint(3, size=80) # By using zdir='y', the y value of these points is fixed to the zs value 0 # and the (x,y) points are plotted on the x and z axes. ax.scatter(x, y, zs=0, zdir='y', c=labels, label='points in (x,z)') # Make legend, set axes limits and labels ax.legend() ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.set_zlim(0, 1) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # Customize the view angle so it's easier to see that the scatter points lie # on the plane y=0 ax.view_init(elev=20., azim=-35) plt.show()
文本图
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection='3d') # Demo 1: zdir zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1)) xs = (1, 4, 4, 9, 4, 1) ys = (2, 5, 8, 10, 1, 2) zs = (10, 3, 8, 9, 1, 8) for zdir, x, y, z in zip(zdirs, xs, ys, zs): label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir) ax.text(x, y, z, label, zdir) # Demo 2: color ax.text(9, 0, 0, "red", color='red') # Demo 3: text2D # Placement 0, 0 would be the bottom left, 1, 1 would be the top right. ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes) # Tweaking display region and labels ax.set_xlim(0, 10) ax.set_ylim(0, 10) ax.set_zlim(0, 10) ax.set_xlabel('X axis') ax.set_ylabel('Y axis') ax.set_zlabel('Z axis') plt.show()
3D拼图
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D, get_test_data from matplotlib import cm import numpy as np # set up a figure twice as wide as it is tall fig = plt.figure(figsize=plt.figaspect(0.5)) # =============== # First subplot # =============== # set up the axes for the first plot ax = fig.add_subplot(1, 2, 1, projection='3d') # plot a 3D surface like in the example mplot3d/surface3d_demo X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X ** 2 + Y ** 2) Z = np.sin(R) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set_zlim(-1.01, 1.01) fig.colorbar(surf, shrink=0.5, aspect=10) # =============== # Second subplot # =============== # set up the axes for the second plot ax = fig.add_subplot(1, 2, 2, projection='3d') # plot a 3D wireframe like in the example mplot3d/wire3d_demo X, Y, Z = get_test_data(0.05) ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) plt.show()
下一篇:虚拟机下载python是否需要联网