脚本专栏 
首页 > 脚本专栏 > 浏览文章

keras用auc做metrics以及早停实例

(编辑:jimmy 日期: 2024/11/17 浏览:3 次 )

我就废话不多说了,大家还是直接看代码吧~

import tensorflow as tf
from sklearn.metrics import roc_auc_score

def auroc(y_true, y_pred):
 return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double)
# Build Model...

model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy', auroc])

完整例子:

def auc(y_true, y_pred):
 auc = tf.metrics.auc(y_true, y_pred)[1]
 K.get_session().run(tf.local_variables_initializer())
 return auc

def create_model_nn(in_dim,layer_size=200):
 model = Sequential()
 model.add(Dense(layer_size,input_dim=in_dim, kernel_initializer='normal'))
 model.add(BatchNormalization())
 model.add(Activation('relu'))
 model.add(Dropout(0.3))
 for i in range(2):
  model.add(Dense(layer_size))
  model.add(BatchNormalization())
  model.add(Activation('relu'))
  model.add(Dropout(0.3))
 model.add(Dense(1, activation='sigmoid'))
 adam = optimizers.Adam(lr=0.01)
 model.compile(optimizer=adam,loss='binary_crossentropy',metrics = [auc]) 
 return model
####cv train
folds = StratifiedKFold(n_splits=5, shuffle=False, random_state=15)
oof = np.zeros(len(df_train))
predictions = np.zeros(len(df_test))
for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_train.values, target2.values)):
 print("fold n°{}".format(fold_))
 X_train = df_train.iloc[trn_idx][features]
 y_train = target2.iloc[trn_idx]
 X_valid = df_train.iloc[val_idx][features]
 y_valid = target2.iloc[val_idx]
 model_nn = create_model_nn(X_train.shape[1])
 callback = EarlyStopping(monitor="val_auc", patience=50, verbose=0, mode='max')
 history = model_nn.fit(X_train, y_train, validation_data = (X_valid ,y_valid),epochs=1000,batch_size=64,verbose=0,callbacks=[callback])
 print('\n Validation Max score : {}'.format(np.max(history.history['val_auc'])))
 predictions += model_nn.predict(df_test[features]).ravel()/folds.n_splits

补充知识:Keras可使用的评价函数

1:binary_accuracy(对二分类问题,计算在所有预测值上的平均正确率)

binary_accuracy(y_true, y_pred)

2:categorical_accuracy(对多分类问题,计算在所有预测值上的平均正确率)

categorical_accuracy(y_true, y_pred)

3:sparse_categorical_accuracy(与categorical_accuracy相同,在对稀疏的目标值预测时有用 )

sparse_categorical_accuracy(y_true, y_pred)

4:top_k_categorical_accuracy(计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确 )

top_k_categorical_accuracy(y_true, y_pred, k=5)

5:sparse_top_k_categorical_accuracy(与top_k_categorical_accracy作用相同,但适用于稀疏情况)

sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)

以上这篇keras用auc做metrics以及早停实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python使用文件操作实现一个XX信息管理系统的示例
下一篇:keras 简单 lstm实例(基于one-hot编码)
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap