脚本专栏 
首页 > 脚本专栏 > 浏览文章

如何使用Python处理HDF格式数据及可视化问题

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

原文链接:https://blog.csdn.net/Fairy_Nan/article/details/105914203

HDF也是一种自描述格式文件,主要用于存储和分发科学数据。气象领域中卫星数据经常使用此格式,比如MODIS,OMI,LIS/OTD等卫星产品。对HDF格式细节感兴趣的可以Google了解一下。

这一次呢还是以Python为主,来介绍如何处理HDF格式数据。Python中有不少库都可以用来处理HDF格式数据,比如h5py可以处理HDF5格式(pandas中 read_hdf 函数),pyhdf可以用来处理HDF4格式。此外,gdal也可以处理HDF(NetCDF,GRIB等)格式数据。

安装

首先安装相关库

如何使用Python处理HDF格式数据及可视化问题

上述库均可以通过conda包管理器进行安装,如果conda包管理器无法安装,对于windows系统,可以查找是否存在已打包的安装包,而unix系统可以通过源码编译安装。

数据处理和可视化

以LIS/OTD卫星闪电成像数据为例,处理HDF4格式数据并进行绘图:

import numpy as np
 
import matplotlib.pyplot as plt
from matplotlib import cm, colors
 
import seaborn as sns
import cartopy.crs as ccrs
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
 
from pyhdf.SD import SD, SDC
 
sns.set_context('talk', font_scale=1.3)
 
data = SD('LISOTD_LRMTS_V2.3.2014.hdf', SDC.READ)
lon = data.select('Longitude')
lat = data.select('Latitude')
flash = data.select('LRMTS_COM_FR')
 
# 设置colormap
collev= ['#ffffff', '#ab18b0', '#07048f', '#1ba01f', '#dfdf18', '#e88f14', '#c87d23', '#d30001', '#383838']
levels = [0, 0.01, 0.02, 0.04, 0.06, 0.1, 0.12, 0.15, 0.18, 0.2]
cmaps = colors.ListedColormap(collev, 'indexed')
norm = colors.BoundaryNorm(levels, cmaps.N)
 
proj = ccrs.PlateCarree()
 
fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=proj))
 
LON, LAT= np.meshgrid(lon[:], lat[:])
 
con = ax.contourf(LON, LAT, flash[:, :, 150], cmap=cmaps, norm=norm, levels=levels, extend='max')
 
cb = fig.colorbar(con, shrink=0.75, pad=0.02)
cb.cmap.set_over('#000000')
cb.ax.tick_params(direction='in', length=5)
 
ax.coastlines()
 
ax.set_xticks(np.linspace(-180, 180, 5), crs=proj)
ax.set_yticks(np.linspace(-90, 90, 5), crs=proj)
 
lon_formatter= LongitudeFormatter(zero_direction_label=True)
lat_formatter= LatitudeFormatter()
 
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)

如何使用Python处理HDF格式数据及可视化问题

某月全球闪电密度分布
上述示例基于pyhdf进行HDF4格式数据处理和可视化,HDF4文件中包含的变量和属性获取方式见文末的Notebook,其中给出了 更详细的示例。

以下基于h5py读取HDF5格式数据,以OMI卫星O3数据为例:

import h5py
 
data = h5py.File('TES-Aura_L3-O3-M2005m07_F01_10.he5')
lon = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/Longitude').value
lat = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/Latitude').value
o3 = data.get('/HDFEOS/GRIDS/NadirGrid/Data Fields/O3').value
 
proj = ccrs.PlateCarree()
 
fig, ax = plt.subplots(figsize=(16, 9), subplot_kw=dict(projection=proj))
LON, LAT = np.meshgrid(lon[:], lat[:])
con = ax.contourf(LON, LAT, o3[10, :, :]*1e6, np.arange(0, 8.01, 0.1), vmin=0, vmax=8, cmap=cm.RdGy_r)
 
ax.coastlines()
ax.set_xticks(np.linspace(-180, 180, 5), crs=proj)
ax.set_yticks(np.linspace(-90, 90, 5), crs=proj)
 
lon_formatter = LongitudeFormatter(zero_direction_label=True)
lat_formatter = LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
 
cb = fig.colorbar(con, shrink=0.75, pad=0.02)
cb.set_ticks(np.arange(0, 8.01, 1))
cb.ax.tick_params(direction='in', length=5)

上述示例中使用类似unix中路径的方式获取相关变量,这在HDF格式数据中称为Groups。不同的组可以包含子组,从而形成类似嵌套的形式。详细的介绍可Google了解。

如何使用Python处理HDF格式数据及可视化问题

总结

上一篇:Python 分布式缓存之Reids数据类型操作详解
下一篇:PyTorch中model.zero_grad()和optimizer.zero_grad()用法
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap