脚本专栏 
首页 > 脚本专栏 > 浏览文章

Keras设置以及获取权重的实现

(编辑:jimmy 日期: 2024/11/18 浏览:3 次 )

layer的两个函数:

get_weights(), set_weights(weights)。

详情请参考about-keras-layers。

补充知识:Keras层的共同函数

关于Keras层:

所有Keras层都有很多共同的函数:

layer.get_weights(): # 以Numpy矩阵的形式返回层的权重。

layer.set_weights(weights): # 从Numpy矩阵中设置层的权重(与get_weights的输出形状相同)。

layer.get_config(): # 返回包含层配置的字典。

图层的重置:

layer = Dense(32)
config = layer.get_config()
reconstructed_layer = Dense.from_config(config)
#
from keras import layers

config = layer.get_config()
layer = layers.deserialize({'class_name': layer.__class__.__name__,
       'config': config})

如果一个层具有单个节点, (i.e. 如果它不是共享层), 可以得到它的输入张量,输出张量,输入尺寸和输出尺寸:

layer.input
layer.output
layer.input_shape
layer.output_shape

如果层有多个节点 (层节点和共享层), 可以使用以下函数: 要指明再哪个节点处获得张量,哪个节点处获得张量尺寸。

layer.get_input_at(node_index)
layer.get_output_at(node_index)
layer.get_input_shape_at(node_index)
layer.get_output_shape_at(node_index)

以上这篇Keras设置以及获取权重的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:keras 实现轻量级网络ShuffleNet教程
下一篇:Python爬虫实现HTTP网络请求多种实现方式
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap