脚本专栏 
首页 > 脚本专栏 > 浏览文章

浅谈keras使用中val_acc和acc值不同步的思考

(编辑:jimmy 日期: 2024/11/18 浏览:3 次 )

在一个比较好的数据集中,比如在分辨不同文字的任务中,一下是几个样本

浅谈keras使用中val_acc和acc值不同步的思考

使用VGG19,vol_acc和acc基本是同步保持增长的,比如

40/40 [==============================] - 23s 579ms/step - loss: 1.3896 - acc: 0.95 - val_loss: 1.3876 - val_acc: 0.95
Epoch 13/15
40/40 [==============================] - 23s 579ms/step - loss: 1.3829 - acc: 0.96 - val_loss: 1.3964 - val_acc: 0.96
Epoch 14/15
40/40 [==============================] - 23s 580ms/step - loss: 1.3844 - acc: 0.97 - val_loss: 1.3892 - val_acc: 0.97
Epoch 15/15
40/40 [==============================] - 24s 591ms/step - loss: 1.3833 - acc: 0.98 - val_loss: 1.4145 - val_acc: 0.98

这表明训练集和测试集同分布,在训练集中学习的特征确实可以应用到测试集中,这是最好的情况。

通过观察热力图也可以看到,最热的地方集中在特征上。比如在分辨不同的文字。

浅谈keras使用中val_acc和acc值不同步的思考

但很多时候,自己建立的数据集并不完美,或者可能不同类的特征分辨并不明显,这时候用cnn强行进行分类就会出现很多奇葩的情况。

考虑一种极端的情况,比如有四个类,而四个类都是同样的简单图形

浅谈keras使用中val_acc和acc值不同步的思考

那么在学习过程中,会出现如下特征的acc和vol_acc

40/40 [==============================] - 23s 579ms/step - loss: 1.3896 - acc: 0.2547 - val_loss: 1.3876 - val_acc: 0.2500
Epoch 13/15
40/40 [==============================] - 23s 579ms/step - loss: 1.3829 - acc: 0.2844 - val_loss: 1.3964 - val_acc: 0.2281
Epoch 14/15
40/40 [==============================] - 23s 580ms/step - loss: 1.3844 - acc: 0.2922 - val_loss: 1.3892 - val_acc: 0.2469
Epoch 15/15
40/40 [==============================] - 24s 591ms/step - loss: 1.3833 - acc: 0.2578 - val_loss: 1.4145 - val_acc: 0.2500

从热力图上看

浅谈keras使用中val_acc和acc值不同步的思考

可以看到因为没有什么特征,所有热力图分布也没有规律,可以说网络什么都没学到。

那么考虑中间的情况,比如很相似的类学习会怎么样?比如不同年份的硬币

浅谈keras使用中val_acc和acc值不同步的思考

40/40 [==============================] - 25s 614ms/step - loss: 0.0967 - acc: 0.9891 - val_loss: 0.3692 - val_acc: 0.8313
40/40 [==============================] - 23s 580ms/step - loss: 0.0476 - acc: 0.9953 - val_loss: 0.3994 - val_acc: 0.7906
40/40 [==============================] - 23s 578ms/step - loss: 0.0237 - acc: 0.9984 - val_loss: 0.5067 - val_acc: 0.7344
40/40 [==============================] - 23s 579ms/step - loss: 0.0184 - acc: 1.0000 - val_loss: 0.5192 - val_acc: 0.7531
40/40 [==============================] - 23s 582ms/step - loss: 0.0286 - acc: 0.9953 - val_loss: 0.9653 - val_acc: 0.6344
40/40 [==============================] - 23s 584ms/step - loss: 0.0138 - acc: 1.0000 - val_loss: 0.4780 - val_acc: 0.7688
40/40 [==============================] - 23s 583ms/step - loss: 0.0115 - acc: 0.9984 - val_loss: 0.5485 - val_acc: 0.7438
40/40 [==============================] - 23s 581ms/step - loss: 0.0096 - acc: 1.0000 - val_loss: 0.5658 - val_acc: 0.7406
40/40 [==============================] - 23s 578ms/step - loss: 0.0046 - acc: 1.0000 - val_loss: 0.5070 - val_acc: 0.7562

浅谈keras使用中val_acc和acc值不同步的思考

可以看到,虽然网络有一定分辨力,但是学习的特征位置并不对,这可能是网络的分辨力有限,或者数据集过小导致的,具体怎么解决还没有想清楚??可以看到,可以看到除非完全没有特征,否则train acc一定能到100%,但是这个是事没有意义的,这就是过拟合。

一开始同步增长,是在学习特征,后来volacc和acc开始有差异,就是过拟合

这可能是训练集过小导致的,如果图片中只有年份呢?

浅谈keras使用中val_acc和acc值不同步的思考

acc = 0.85,vol_acc=0.85
acc = 0.90,vol_acc=0.90  
acc = 0.92,vol_acc=0.92  
acc = 0.94,vol_acc=0.92

浅谈keras使用中val_acc和acc值不同步的思考

可以看到,还是能正确分类的,之所以硬币不能正确分类,是因为训练数据集过小,其他特征掩盖了年份的特征,只要增大数据量就行了。

另外。还有几点训练技巧:

1、拓展函数不要怕极端,极端的拓展函数有利于学到目标真正的特征。

2、使用灰度图作为训练集?如果以纹理为主,使用灰度图,灰度图能增强网络的鲁棒性,因为可以减少光照的影响,但是会损失颜色信息,可以用结果看看到底该使用哪种图?

3、使用小的分辨率图片可能错过某些特征,尤其是在小数据集的时候,所以可能的话使用大数据集,或者提高分辨率,根据使用者的目标。

以上这篇浅谈keras使用中val_acc和acc值不同步的思考就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:基于PyTorch的permute和reshape/view的区别介绍
下一篇:Python Switch Case三种实现方法代码实例
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap