Anaconda+vscode+pytorch环境搭建过程详解
(编辑:jimmy 日期: 2024/11/18 浏览:3 次 )
1、安装Anaconda
Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。在官网上下载https://www.anaconda.com/distribution/,因为服务器在国外会很慢,建议从清华镜像https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载。
2、安装VScode
需要在Anaconda再装VScode,因为Anaconda公司和微软公司的合作,不用在对进行VScode的配置。
3、安装Pytorch
Pytorch是facebook公司发布的著名深度学习框架。在Pytorch官网上https://pytorch.org/在命令行窗口输入
from fastai.vision import models, URLs, ImageDataBunch, cnn_learner, untar_data, accuracy import torch def main(): path = untar_data(URLs.MNIST_SAMPLE) # 下载数据集,这里只是MNIST的子集,只包含3和7的图像,会下载并解压(untar的命名原因)到/root/.fastai/data/mnist_sample(如果你是root用户)下,包含训练数据,测试数据,包含label的csv文件 data = ImageDataBunch.from_folder(path) # 利用ImageDataBunch读取文件夹,返回一个ImageDataBunch对象 learn = cnn_learner(data, models.resnet18, metrics=accuracy) # 构建cnn模型,使用resnet18预训练模型 learn.fit(1) # 训练一轮 if __name__ == '__main__': main()
结果输出:
下一篇:MxNet预训练模型到Pytorch模型的转换方式