脚本专栏 
首页 > 脚本专栏 > 浏览文章

python 数据分析实现长宽格式的转换

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

我就废话不多说了,大家还是直接看代码吧!

# encoding=utf-8

import numpy as np
import pandas as pd

# 长宽格式的转换
# 1
data = pd.read_csv('d:data/macrodata.csv')
print 'data:=\n', data
print 'data.to_records():=\n', data.to_records()
print 'data.year:=\n', data.year
print 'data.quarter:=\n', data.quarter

periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
print 'periods:=\n', periods
data = pd.DataFrame(data.to_records(),
          columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
          index=periods.to_timestamp('D', 'end'))
print 'data:=\n', data
ldata = data.stack().reset_index().rename(columns={0: 'value'})
# print 'ldata:=\n', ldata
print 'ldata.get(\'realgdp\'):=\n', ldata.get('realgdp')
print 'ldata.get(\'unemp\'):=\n', ldata.get('unemp')
wdata = ldata.pivot('date', 'item', 'value')
print 'ldata:=\n', ldata
print 'wdata:=\n', wdata

# 2
print 'ldata[:10]:=\n', ldata[:10]
pivoted = ldata.pivot('date', 'item', 'value')
print 'pivoted:=\n', pivoted
print 'pivoted.head():=\n', pivoted.head()
print 'ldata:=\n', ldata
ldata['value2'] = np.random.randn(len(ldata))
print 'ldata[\'value2\']:=\n', ldata['value2']
print 'ldata[:10]:=\n', ldata[:10]
pivoted = ldata.pivot('date', 'item')
print 'pivoted:=\n', pivoted
print pivoted[:5]
print 'pivoted[\'value\'][:5]:=\n', pivoted['value'][:5]
print 'ldata:=\n', ldata
unstacked = ldata.set_index(['date', 'item']).unstack('item')
print 'unstacked:=\n', unstacked

print 'test'

补充知识:python使用_pandas_用stack和unstack进行行列重塑(key-value变宽表)

数据结构的重塑(reshape)

与数据库交互时常遇到堆叠格式(key-value)和宽表形式(dataframe)的转换,如:

堆叠格式:

python 数据分析实现长宽格式的转换

宽表形式dataframe:

python 数据分析实现长宽格式的转换

下面是相互转换的示例代码:

import pandas as pd
import numpy as np
 
 
# 常用的表格形式的数据结构
df = pd.DataFrame(np.arange(6).reshape((2,3)), index=['id1','id2'], columns=['attr1','attr2','attr3'])
print(df)
out:
  attr1 attr2 attr3
id1   0   1   2
id2   3   4   5
 
# 宽表形式(dataframe)转变为堆叠形式(key-value)形式
# 数据库中常以该形式存储
df_key_value = df.stack().reset_index()
df_key_value.columns = ['id', 'attr', 'value']
print(df_key_value)
out:
id	attr	value
0	id1	attr1	0
1	id1	attr2	1
2	id1	attr3	2
3	id2	attr1	3
4	id2	attr2	4
5	id2	attr3	5
 
# 堆叠转换为宽表形式
 
# 用set_index创建层次化索引,在用unstack重塑
# unstack中作为旋转轴的变量(如attr),其值会作为列变量展开
df_key_value.set_index(['id','attr']).unstack('attr')
out:
value
attr	attr1	attr2	attr3
id			
id1	0	1	2
id2	3	4	5
 
# 多层索引转化为宽表
df_long = df_key_value.set_index(['id','attr']).unstack('attr')['value'].reset_index()
df_long
out:
attr	id	attr1	attr2	attr3
0	id1	0	1	2
1	id2	3	4	5
 
# 堆叠转换为宽表的快捷键---pivot
df_key_value.pivot('id','attr','value')
out:
attr	attr1	attr2	attr3
id			
id1	0	1	2
id2	3	4	5

以上这篇python 数据分析实现长宽格式的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Windows 下更改 jupyterlab 默认启动位置的教程详解
下一篇:DjangoWeb使用Datatable进行后端分页的实现
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap