脚本专栏 
首页 > 脚本专栏 > 浏览文章

tensorflow指定CPU与GPU运算的方法实现

(编辑:jimmy 日期: 2024/11/18 浏览:3 次 )

1.指定GPU运算

如果安装的是GPU版本,在运行的过程中TensorFlow能够自动检测。如果检测到GPU,TensorFlow会尽可能的利用找到的第一个GPU来执行操作。

如果机器上有超过一个可用的GPU,除了第一个之外的其他的GPU默认是不参与计算的。为了让TensorFlow使用这些GPU,必须将OP明确指派给他们执行。with......device语句能够用来指派特定的CPU或者GPU执行操作:

import tensorflow as tf
import numpy as np

with tf.Session() as sess:
  with tf.device('/cpu:0'):
    a = tf.placeholder(tf.int32)
    b = tf.placeholder(tf.int32)
    add = tf.add(a, b)
    sum = sess.run(add, feed_dict={a: 3, b: 4})
    print(sum)

设备的字符串标识,当前支持的设备包括以下的几种:

cpu:0 机器的第一个cpu。

gpu:0 机器的第一个gpu,如果有的话

gpu:1 机器的第二个gpu,依次类推

类似的还有tf.ConfigProto来构建一个config,在config中指定相关的GPU,并且在session中传入参数config=“自己创建的config”来指定gpu操作

其中,tf.ConfigProto函数的参数如下:

log_device_placement=True: 是否打印设备分配日志

allow_soft_placement=True: 如果指定的设备不存在,允许TF自动分配设备

import tensorflow as tf
import numpy as np

config = tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)

with tf.Session(config=config) as sess:
  a = tf.placeholder(tf.int32)
  b = tf.placeholder(tf.int32)
  add = tf.add(a, b)
  sum = sess.run(add, feed_dict={a: 3, b: 4})
  print(sum)

2.设置GPU使用资源

上文的tf.ConfigProto函数生成的config之后,还可以设置其属性来分配GPU的运算资源,如下代码就是按需分配

import tensorflow as tf
import numpy as np

config = tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)
config.gpu_options.allow_growth = True

with tf.Session(config=config) as sess:
  a = tf.placeholder(tf.int32)
  b = tf.placeholder(tf.int32)
  add = tf.add(a, b)
  sum = sess.run(add, feed_dict={a: 3, b: 4})
  print(sum)

使用allow_growth option,刚开始会分配少量的GPU容量,然后按需要慢慢的增加,有与不会释放内存,随意会导致内存碎片。

同样,上述的代码也可以在config创建时指定,

import tensorflow as tf
import numpy as np

gpu_options = tf.GPUOptions(allow_growth=True)
config = tf.ConfigProto(gpu_options=gpu_options)


with tf.Session(config=config) as sess:
  a = tf.placeholder(tf.int32)
  b = tf.placeholder(tf.int32)
  add = tf.add(a, b)
  sum = sess.run(add, feed_dict={a: 3, b: 4})
  print(sum)

我们还可以给gpu分配固定大小的计算资源。

gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.5)

上述代码的含义是分配给tensorflow的GPU显存大小为:GPU的实际显存*0.5

tensorflow指定CPU与GPU运算的方法实现

tensorflow指定CPU与GPU运算的方法实现

上一篇:django使用JWT保存用户登录信息
下一篇:pandas中read_csv、rolling、expanding用法详解
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap