Anaconda配置pytorch-gpu虚拟环境的图文教程
(编辑:jimmy 日期: 2024/11/18 浏览:3 次 )
1、更新NVIDIA驱动
选对应自己显卡的驱动,(选studio版本,不要game版本)驱动链接
2、添加Anaconda清华镜像
方法一:anaconda命令替换
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main conda config --set show_channel_urls yes
(Mark)换回默认源代码:
conda config --remove-key channels
方法二:替换.condarc
show_channel_urls: true channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
3.创建虚拟环境
创建: conda create -n 环境名 python=X.X 开启: activate 环境名 关闭: conda deactivate 删除: conda remove -n 环境名 --all 添加包: conda install -n 环境名 包名 移除包: conda remove -n 环境名 包名
4. 安装pytorch命令——对应情况自选:命令代码链接(pytorch官网)
1.PIP安装(推荐)
pip install torch===1.4.0 torchvision===0.5.0 -f https://download.pytorch.org/whl/torch_stable.html
这个速度比conda稳定 卡住了按回车好像还可以救回来
2.conda安装(不推荐 老是中断)
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch (要去掉-c pytorch 不然还是默认源) 最终输入命令: conda install pytorch torchvision cudatoolkit=10.1
网络在各处中断 有时候48%又断了
5.PIP安装完之后测试
import torch flag = torch.cuda.is_available() print(flag) ngpu= 1 # Decide which device we want to run on device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") print(device) print(torch.cuda.get_device_name(0)) print(torch.rand(3,3).cuda())
结果:被conda命令折腾一下午,终于被pip命令解救了!
总结
下一篇:解决paramiko执行命令超时的问题