脚本专栏 
首页 > 脚本专栏 > 浏览文章

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

Rosenbrock函数的定义如下:

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

其函数图像如下:

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

我分别使用梯度下降法和牛顿法做了寻找Rosenbrock函数的实验。

梯度下降

梯度下降的更新公式:

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

图中蓝色的点为起点,橙色的曲线(实际上是折线)是寻找最小值点的轨迹,终点(最小值点)为 (1,1)(1,1)。

梯度下降用了约5000次才找到最小值点。

我选择的迭代步长 α=0.002α=0.002,αα 没有办法取的太大,当为0.003时就会发生振荡:

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

牛顿法

牛顿法的更新公式:

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

Hessian矩阵中的每一个二阶偏导我是用手算算出来的。

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

牛顿法只迭代了约5次就找到了函数的最小值点。

下面贴出两个实验的代码。

梯度下降:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker


def f(x, y):
 return (1 - x) ** 2 + 100 * (y - x * x) ** 2


def H(x, y):
 return np.matrix([[1200 * x * x - 400 * y + 2, -400 * x],
      [-400 * x, 200]])


def grad(x, y):
 return np.matrix([[2 * x - 2 + 400 * x * (x * x - y)],
      [200 * (y - x * x)]])


def delta_grad(x, y):
 g = grad(x, y)

 alpha = 0.002
 delta = alpha * g
 return delta


# ----- 绘制等高线 -----
# 数据数目
n = 256
# 定义x, y
x = np.linspace(-1, 1.1, n)
y = np.linspace(-0.1, 1.1, n)

# 生成网格数据
X, Y = np.meshgrid(x, y)

plt.figure()
# 填充等高线的颜色, 8是等高线分为几部分
plt.contourf(X, Y, f(X, Y), 5, alpha=0, cmap=plt.cm.hot)
# 绘制等高线
C = plt.contour(X, Y, f(X, Y), 8, locator=ticker.LogLocator(), colors='black', linewidth=0.01)
# 绘制等高线数据
plt.clabel(C, inline=True, fontsize=10)
# ---------------------

x = np.matrix([[-0.2],
    [0.4]])

tol = 0.00001
xv = [x[0, 0]]
yv = [x[1, 0]]

plt.plot(x[0, 0], x[1, 0], marker='o')

for t in range(6000):
 delta = delta_grad(x[0, 0], x[1, 0])
 if abs(delta[0, 0]) < tol and abs(delta[1, 0]) < tol:
  break
 x = x - delta
 xv.append(x[0, 0])
 yv.append(x[1, 0])

plt.plot(xv, yv, label='track')
# plt.plot(xv, yv, label='track', marker='o')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Gradient for Rosenbrock Function')
plt.legend()
plt.show()

牛顿法:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker


def f(x, y):
 return (1 - x) ** 2 + 100 * (y - x * x) ** 2


def H(x, y):
 return np.matrix([[1200 * x * x - 400 * y + 2, -400 * x],
      [-400 * x, 200]])


def grad(x, y):
 return np.matrix([[2 * x - 2 + 400 * x * (x * x - y)],
      [200 * (y - x * x)]])


def delta_newton(x, y):
 alpha = 1.0
 delta = alpha * H(x, y).I * grad(x, y)
 return delta


# ----- 绘制等高线 -----
# 数据数目
n = 256
# 定义x, y
x = np.linspace(-1, 1.1, n)
y = np.linspace(-1, 1.1, n)

# 生成网格数据
X, Y = np.meshgrid(x, y)

plt.figure()
# 填充等高线的颜色, 8是等高线分为几部分
plt.contourf(X, Y, f(X, Y), 5, alpha=0, cmap=plt.cm.hot)
# 绘制等高线
C = plt.contour(X, Y, f(X, Y), 8, locator=ticker.LogLocator(), colors='black', linewidth=0.01)
# 绘制等高线数据
plt.clabel(C, inline=True, fontsize=10)
# ---------------------

x = np.matrix([[-0.3],
    [0.4]])

tol = 0.00001
xv = [x[0, 0]]
yv = [x[1, 0]]

plt.plot(x[0, 0], x[1, 0], marker='o')

for t in range(100):
 delta = delta_newton(x[0, 0], x[1, 0])
 if abs(delta[0, 0]) < tol and abs(delta[1, 0]) < tol:
  break
 x = x - delta
 xv.append(x[0, 0])
 yv.append(x[1, 0])

plt.plot(xv, yv, label='track')
# plt.plot(xv, yv, label='track', marker='o')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Newton\'s Method for Rosenbrock Function')
plt.legend()
plt.show()

以上这篇python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python topk()函数求最大和最小值实例
下一篇:Python如何通过百度翻译API实现翻译功能
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap