脚本专栏 
首页 > 脚本专栏 > 浏览文章

Pyspark读取parquet数据过程解析

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

parquet数据:列式存储结构,由Twitter和Cloudera合作开发,相比于行式存储,其特点是:

可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量;压缩编码可以降低磁盘存储空间,使用更高效的压缩编码节约存储空间;只读取需要的列,支持向量运算,能够获取更好的扫描性能。

那么我们怎么在pyspark中读取和使用parquet数据呢?我以local模式,linux下的pycharm执行作说明。

首先,导入库文件和配置环境:

import os
from pyspark import SparkContext, SparkConf
from pyspark.sql.session import SparkSession

os.environ["PYSPARK_PYTHON"]="/usr/bin/python3" #多个python版本时需要指定

conf = SparkConf().setAppName('test_parquet')
sc = SparkContext('local', 'test', conf=conf)
spark = SparkSession(sc)

然后,使用spark进行读取,得到DataFrame格式的数据:host:port 属于主机和端口号

parquetFile = r"hdfs://host:port/Felix_test/test_data.parquet"
df = spark.read.parquet(parquetFile)

而,DataFrame格式数据有一些方法可以使用,例如:

1.df.first() :显示第一条数据,Row格式

print(df.first())

Pyspark读取parquet数据过程解析

2.df.columns:列名

3.df.count():数据量,数据条数

4.df.toPandas():从spark的DataFrame格式数据转到Pandas数据结构

5.df.show():直接显示表数据;其中df.show(n) 表示只显示前n行信息

6.type(df):显数据示格式

Pyspark读取parquet数据过程解析

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python爬虫爬取电影票房数据及图表展示操作示例
下一篇:Python基于pyecharts实现关联图绘制
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap