浅谈pytorch torch.backends.cudnn设置作用
(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )
cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用
如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法
然后再设置:
torch.backends.cudnn.benchmark = true
那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题
一般来讲,应该遵循以下准则:
如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率;
如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。
所以我们经常看见在代码开始出两者同时设置:
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
以上这篇浅谈pytorch torch.backends.cudnn设置作用就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
下一篇:详解python常用命令行选项与环境变量