脚本专栏 
首页 > 脚本专栏 > 浏览文章

pandas和spark dataframe互相转换实例详解

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

这篇文章主要介绍了pandas和spark dataframe互相转换实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

from pyspark.sql import SparkSession
# 初始化spark会话
spark = SparkSession   .builder   .getOrCreate()
spark_df = spark.createDataFrame(pandas_df)

spark的dataframe转pandas的dataframe

import pandas as pd
pandas_df = spark_df.toPandas()

由于pandas的方式是单机版的,即toPandas()的方式是单机版的,所以参考breeze_lsw改成分布式版本:

import pandas as pd
def _map_to_pandas(rdds):
  return [pd.DataFrame(list(rdds))]
  
def topas(df, n_partitions=None):
  if n_partitions is not None: df = df.repartition(n_partitions)
  df_pand = df.rdd.mapPartitions(_map_to_pandas).collect()
  df_pand = pd.concat(df_pand)
  df_pand.columns = df.columns
  return df_pand
  
pandas_df = topas(spark_df)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:使用Tkinter制作信息提示框
下一篇:Python中import导入不同目录的模块方法详解
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap