脚本专栏 
首页 > 脚本专栏 > 浏览文章

tensorflow的ckpt及pb模型持久化方式及转化详解

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

使用tensorflow训练模型的时候,模型持久化对我们来说非常重要。

如果我们的模型比较复杂,需要的数据比较多,那么在模型的训练时间会耗时很长。如果在训练过程中出现了模型不可预期的错误,导致训练意外终止,那么我们将会前功尽弃。为了解决这一问题,我们可以使用模型持久化(保存为ckpt文件格式)来保存我们在训练过程中的临时数据。、

如果我们训练出的模型需要提供给用户做离线预测,那么我们只需要完成前向传播过程。这个时候我们就可以使用模型持久化(保存为pb文件格式)来只保存前向传播过程中的变量并将变量固定下来,这时候用户只需要提供一个输入即可得到前向传播的预测结果。

ckpt和pb持久化方式的区别在于ckpt文件将模型结构与模型权重分离保存,便于训练过程;pb文件则是graph_def的序列化文件,便于发布和离线预测。官方提供freeze_grpah.py脚本来将ckpt文件转为pb文件。

CKPT模型持久化

首先定义前向传播过程;

声明并得到一个Saver;

使用Saver.save()保存模型;

# coding=UTF-8 支持中文编码格式
import tensorflow as tf
import shutil
import os.path
 
MODEL_DIR = "/home/zheng/PycharmProjects/ckptLoad/Models/"
MODEL_NAME = "model.ckpt"
 
#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.add(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false
 
init = tf.global_variables_initializer()
saver = tf.train.Saver() #声明saver用于保存模型
 
with tf.Session() as sess:
 sess.run(init)
 print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]}) #输入一个数据测试一下
 saver.save(sess, os.path.join(MODEL_DIR, MODEL_NAME)) #模型保存
 print("%d ops in the final graph." % len(tf.get_default_graph().as_graph_def().node)) #得到当前图有几个操作节点

predictions : [ 101.]
28 ops in the final graph.

注:代码含义请参考注释,需要注意的是可以自定义模型保存的路径

ckpt模型持久化使用起来非常简单,只需要我们声明一个tf.train.Saver,然后调用save()函数,将会话模型保存到指定的目录。执行代码结果,会在我们指定模型目录下出现4个文件

tensorflow的ckpt及pb模型持久化方式及转化详解

checkpoint : 记录目录下所有模型文件列表
ckpt.data : 保存模型中每个变量的取值
ckpt.meta : 保存整个计算图的结构

ckpt模型加载

# -*- coding: utf-8 -*-)
import tensorflow as tf
from numpy.random import RandomState
 
# 定义训练数据batch的大小
batch_size = 8
 
#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder") #输入占位符,并指定名字,后续模型读取可能会用的
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.add(_y, 50, name="predictions") #输出节点名字,后续模型读取会用到,比50大返回true,否则返回false
 
#saver=tf.train.Saver()
# creare a session,创建一个会话来运行TensorFlow程序
with tf.Session() as sess:
 
 saver = tf.train.import_meta_graph('/home/zheng/Models/model/model.meta')
 saver.restore(sess, tf.train.latest_checkpoint('/home/zheng/Models/model'))
 #saver.restore(sess, tf.train.latest_checkpoint('/home/zheng/Models/model'))
 # 初始化变量
 sess.run(tf.global_variables_initializer())
 print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})

代码结果,可以看到运行结果一样

predictions : [ 101.]

PB模型持久化

定义运算过程

通过 get_default_graph().as_graph_def() 得到当前图的计算节点信息

通过 graph_util.convert_variables_to_constants 将相关节点的values固定

通过 tf.gfile.GFile 进行模型持久化

# coding=UTF-8
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util
 
MODEL_DIR = "/home/zheng/PycharmProjects/pbLoad/Models/"
MODEL_NAME = "model"
 
 
#output_graph = "model/pb/add_model.pb"
 
#下面的过程你可以替换成CNN、RNN等你想做的训练过程,这里只是简单的一个计算公式
input_holder = tf.placeholder(tf.float32, shape=[1], name="input_holder")
W1 = tf.Variable(tf.constant(5.0, shape=[1]), name="W1")
B1 = tf.Variable(tf.constant(1.0, shape=[1]), name="B1")
_y = (input_holder * W1) + B1
predictions = tf.add(_y, 50, name="predictions")
init = tf.global_variables_initializer()
 
with tf.Session() as sess:
 sess.run(init)
 print "predictions : ", sess.run(predictions, feed_dict={input_holder: [10.0]})
 graph_def = tf.get_default_graph().as_graph_def() #得到当前的图的 GraphDef 部分,
              #通过这个部分就可以完成重输入层到
              #输出层的计算过程
 
 output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
  sess,
  graph_def,
  ["predictions"] #需要保存节点的名字
 )
 with tf.gfile.GFile(os.path.join(MODEL_DIR,MODEL_NAME), "wb") as f: # 保存模型
  f.write(output_graph_def.SerializeToString()) # 序列化输出
 print("%d ops in the final graph." % len(output_graph_def.node))
 print (predictions)
 
# for op in tf.get_default_graph().get_operations(): 打印模型节点信息
#  print (op.name)

结果输出

predictions : [ 101.]
Converted 2 variables to const ops.
9 ops in the final graph.
Tensor("predictions:0", shape=(1,), dtype=float32)

tensorflow的ckpt及pb模型持久化方式及转化详解

并在指定目录下生成pb文件模型,保存了从输入层到输出层这个计算过程的计算图和相关变量的值,我们得到这个模型后传入一个输入,既可以得到一个预估的输出值

pb模型文件加载

# -*- coding: utf-8 -*-)
from tensorflow.python.platform import gfile
import tensorflow as tf
from numpy.random import RandomState
 
sess = tf.Session()
with gfile.FastGFile('./Models/model', 'rb') as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())
 sess.graph.as_default()
 tf.import_graph_def(graph_def, name='') # 导入计算图
 
# 需要有一个初始化的过程
sess.run(tf.global_variables_initializer())
# 需要先复原变量
sess.run('W1:0')
sess.run('B1:0')
# 输入
input_x = sess.graph.get_tensor_by_name('input_holder:0')
#input_y = sess.graph.get_tensor_by_name('y-input:0')
op = sess.graph.get_tensor_by_name('predictions:0')
ret = sess.run(op, feed_dict={input_x:[10]})
print(ret)

输出结果

[ 101.]

我们可以看到结果一致。

ckpt格式转pb格式

通过传入 CKPT 模型的路径得到模型的图和变量数据
通过 import_meta_graph 导入模型中的图
通过 saver.restore 从模型中恢复图中各个变量的数据
通过 graph_util.convert_variables_to_constants 将模型持久化

# coding=UTF-8
import tensorflow as tf
import os.path
import argparse
from tensorflow.python.framework import graph_util
 
MODEL_DIR = "/home/zheng/PycharmProjects/ckptToPb/model/"
MODEL_NAME = "frozen_model"
 
def freeze_graph(model_folder):
 checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
 input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径
 output_graph = os.path.join(MODEL_DIR, MODEL_NAME) #PB模型保存路径
 
 output_node_names = "predictions" #原模型输出操作节点的名字
 saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) #得到图、clear_devices :Whether or not to clear the device field for an `Operation` or `Tensor` during import.
 
 graph = tf.get_default_graph() #获得默认的图
 input_graph_def = graph.as_graph_def() #返回一个序列化的图代表当前的图
 
 with tf.Session() as sess:
  saver.restore(sess, input_checkpoint) #恢复图并得到数据
 
  print "predictions : ", sess.run("predictions:0", feed_dict={"input_holder:0": [10.0]}) # 测试读出来的模型是否正确,注意这里传入的是输出 和输入 节点的 tensor的名字,不是操作节点的名字
 
  output_graph_def = graph_util.convert_variables_to_constants( #模型持久化,将变量值固定
   sess,
   input_graph_def,
   output_node_names.split(",") #如果有多个输出节点,以逗号隔开
  )
  with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
   f.write(output_graph_def.SerializeToString()) #序列化输出
  print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点
 
 
if __name__ == '__main__':
 #parser = argparse.ArgumentParser()
 #parser.add_argument("model_folder", type=str, help="input ckpt model dir") #命令行解析,help是提示符,type是输入的类型,
 # 这里运行程序时需要带上模型ckpt的路径,不然会报 error: too few arguments
 #aggs = parser.parse_args()
 #freeze_graph(aggs.model_folder)
 freeze_graph("/home/zheng/PycharmProjects/ckptLoad/Models/") #模型目录

注意改变ckpt模型目录及pb文件保存目录 。

tensorflow的ckpt及pb模型持久化方式及转化详解

运行结果为

predictions : [ 101.]
Converted 2 variables to const ops.
9 ops in the final graph.
 

总结:cpkt文件格式将模型保存为4个文件,pb文件格式为一个。ckpt模型持久化方式将图结构与权重参数分开保存,多了模型更多的细节,适合模型训练阶段;而pb持久化方式完成了从输入到输出的前向传播,完成了端到端的形式,更是个离线使用。

以上这篇tensorflow的ckpt及pb模型持久化方式及转化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:pycharm无法导入本地模块的解决方式
下一篇:解决pycharm中导入自己写的.py函数出错问题
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap