脚本专栏 
首页 > 脚本专栏 > 浏览文章

Tensorflow 卷积的梯度反向传播过程

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

一. valid卷积的梯度

我们分两种不同的情况讨论valid卷积的梯度:第一种情况,在已知卷积核的情况下,对未知张量求导(即对张量中每一个变量求导);第二种情况,在已知张量的情况下,对未知卷积核求导(即对卷积核中每一个变量求导)

1.已知卷积核,对未知张量求导

我们用一个简单的例子理解valid卷积的梯度反向传播。假设有一个3x3的未知张量x,以及已知的2x2的卷积核K

Tensorflow提供函数tf.nn.conv2d_backprop_input实现了valid卷积中对未知变量的求导,以上示例对应的代码如下:

import tensorflow as tf

# 卷积核
kernel=tf.constant(
  [
    [[[3]],[[4]]],
    [[[5]],[[6]]]
  ]
  ,tf.float32
)

# 某一函数针对sigma的导数
out=tf.constant(
  [
    [
      [[-1],[1]],
      [[2],[-2]]
    ]
  ]
  ,tf.float32
)


# 针对未知变量的导数的方向计算
inputValue=tf.nn.conv2d_backprop_input((1,3,3,1),kernel,out,[1,1,1,1],'VALID')

session=tf.Session()

print(session.run(inputValue))
[[[[ -3.]
  [ -1.]
  [ 4.]]

 [[ 1.]
  [ 1.]
  [ -2.]]

 [[ 10.]
  [ 2.]
  [-12.]]]]

2.已知输入张量,对未知卷积核求导

假设已知3行3列的张量x和未知的2行2列的卷积核K

Tensorflow提供函数tf.nn.conv2d_backprop_filter实现valid卷积对未知卷积核的求导,以上示例的代码如下:

import tensorflow as tf

# 输入张量
x=tf.constant(
  [
    [
      [[1],[2],[3]],
      [[4],[5],[6]],
      [[7],[8],[9]]
    ]
  ]
  ,tf.float32
)

# 某一个函数F对sigma的导数
partial_sigma=tf.constant(
  [
    [
      [[-1],[-2]],
      [[-3],[-4]]
    ]
  ]
  ,tf.float32
)

# 某一个函数F对卷积核k的导数
partial_sigma_k=tf.nn.conv2d_backprop_filter(x,(2,2,1,1),partial_sigma,[1,1,1,1],'VALID')

session=tf.Session()

print(session.run(partial_sigma_k))
[[[[-37.]]

 [[-47.]]]


 [[[-67.]]

 [[-77.]]]]

二. same卷积的梯度

1.已知卷积核,对输入张量求导

假设有3行3列的已知张量x,2行2列的未知卷积核K

import tensorflow as tf

# 卷积核
kernel=tf.constant(
  [
    [[[3]],[[4]]],
    [[[5]],[[6]]]
  ]
  ,tf.float32
)

# 某一函数针对sigma的导数
partial_sigma=tf.constant(
  [
    [
      [[-1],[1],[3]],
      [[2],[-2],[-4]],
      [[-3],[4],[1]]
    ]
  ]
  ,tf.float32
)


# 针对未知变量的导数的方向计算
partial_x=tf.nn.conv2d_backprop_input((1,3,3,1),kernel,partial_sigma,[1,1,1,1],'SAME')

session=tf.Session()

print(session.run(inputValue))
[[[[ -3.]
  [ -1.]
  [ 4.]]

 [[ 1.]
  [ 1.]
  [ -2.]]

 [[ 10.]
  [ 2.]
  [-12.]]]]

2.已知输入张量,对未知卷积核求导

假设已知3行3列的张量x和未知的2行2列的卷积核K

import tensorflow as tf

# 卷积核
x=tf.constant(
  [
    [
      [[1],[2],[3]],
      [[4],[5],[6]],
      [[7],[8],[9]]
    ]
  ]
  ,tf.float32
)

# 某一函数针对sigma的导数
partial_sigma=tf.constant(
  [
    [
      [[-1],[-2],[1]],
      [[-3],[-4],[2]],
      [[-2],[1],[3]]
    ]
  ]
  ,tf.float32
)


# 针对未知变量的导数的方向计算
partial_sigma_k=tf.nn.conv2d_backprop_filter(x,(2,2,1,1),partial_sigma,[1,1,1,1],'SAME')

session=tf.Session()

print(session.run(partial_sigma_k))
[[[[ -1.]]

 [[-54.]]]


 [[[-43.]]

 [[-77.]]]]

以上这篇Tensorflow 卷积的梯度反向传播过程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python yield和Generator函数用法详解
下一篇:tensorflow 实现自定义梯度反向传播代码
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap