脚本专栏 
首页 > 脚本专栏 > 浏览文章

在tensorflow中实现屏蔽输出的log信息

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

tensorflow中可以通过配置环境变量 'TF_CPP_MIN_LOG_LEVEL' 的值,控制tensorflow是否屏蔽通知信息、警告、报错等输出信息。

使用方法:

import os
import tensorflow as tf
 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}

TF_CPP_MIN_LOG_LEVEL 取值 0 : 0也是默认值,输出所有信息

TF_CPP_MIN_LOG_LEVEL 取值 1 : 屏蔽通知信息

TF_CPP_MIN_LOG_LEVEL 取值 2 : 屏蔽通知信息和警告信息

TF_CPP_MIN_LOG_LEVEL 取值 3 : 屏蔽通知信息、警告信息和报错信息

测试代码:

import tensorflow as tf
import os
 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
 
v1 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v1')
v2 = tf.constant([1.0, 2.0, 3.0], shape=[3], name='v2')
sumV12 = v1 + v2
 
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
 print sess.run(sumV12)

TF_CPP_MIN_LOG_LEVEL 为 0 的输出:

2018-04-21 14:59:09.910415: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910442: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910448: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910453: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910457: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.911260: I tensorflow/core/common_runtime/direct_session.cc:300] Device mapping:
2018-04-21 14:59:09.911816: I tensorflow/core/common_runtime/simple_placer.cc:872] add: (Add)/job:localhost/replica:0/task:0/cpu:0
2018-04-21 14:59:09.911835: I tensorflow/core/common_runtime/simple_placer.cc:872] v2: (Const)/job:localhost/replica:0/task:0/cpu:0
2018-04-21 14:59:09.911841: I tensorflow/core/common_runtime/simple_placer.cc:872] v1: (Const)/job:localhost/replica:0/task:0/cpu:0
Device mapping: no known devices.
add: (Add): /job:localhost/replica:0/task:0/cpu:0
v2: (Const): /job:localhost/replica:0/task:0/cpu:0
v1: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2. 4. 6.]

值为0也是默认的输出,分为三部分,一个是警告信息说没有优化加速,二是通知信息告知操作所用的设备,三是程序中代码指定要输出的结果信息

TF_CPP_MIN_LOG_LEVEL 为 1 的输出,没有通知信息了:

2018-04-21 14:59:09.910415: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910442: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910448: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910453: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-04-21 14:59:09.910457: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
Device mapping: no known devices.
add: (Add): /job:localhost/replica:0/task:0/cpu:0
v2: (Const): /job:localhost/replica:0/task:0/cpu:0
v1: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2. 4. 6.]

TF_CPP_MIN_LOG_LEVEL 为 2和3 的输出,设置为2就没有警告信息了,设置为3警告和报错信息(如果有)就都没有了:

Device mapping: no known devices.
add: (Add): /job:localhost/replica:0/task:0/cpu:0
v2: (Const): /job:localhost/replica:0/task:0/cpu:0
v1: (Const): /job:localhost/replica:0/task:0/cpu:0
[ 2. 4. 6.]

以上这篇在tensorflow中实现屏蔽输出的log信息就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:详解字符串在Python内部是如何省内存的
下一篇:python自动化unittest yaml使用过程解析
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap