脚本专栏 
首页 > 脚本专栏 > 浏览文章

解决Tensorflow占用GPU显存问题

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

我使用Pytorch进行模型训练时发现真正模型本身对于显存的占用并不明显,但是对应的转换为tensorflow后(权重也进行了转换),发现Python-tensorflow在使用时默认吃掉所有显存,并且不手动终结程序的话显存并不释放(我有两个序贯的模型,前面一个跑完后并不释放占用显存)(https://github.com/tensorflow/tensorflow/issues/1727),这一点对于后续的工作有很大的影响。

后面发现python-tensorflow限制显存有两种方法:

1. 设置显卡的使用率

这种方法在学习和工作中比较好用,学习时可提高显卡使用效率,工作时可方便的获得GPU显存消耗极限,用以提供显卡购买时的参数,现将代码展示如下:

解决Tensorflow占用GPU显存问题

这里的0.1 表示使用显存总量的的10%

2. 设置显卡按需使用(这个本人并没有专门测试,只是从tensorflow论坛上获得)

gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

以上这篇解决Tensorflow占用GPU显存问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:TensorFlow 显存使用机制详解
下一篇:opencv python如何实现图像二值化
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap