脚本专栏 
首页 > 脚本专栏 > 浏览文章

使用Tensorflow实现可视化中间层和卷积层

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

为了查看网络训练的效果或者便于调参、更改结构等,我们常常将训练网络过程中的loss、accurcy等参数。

除此之外,有时我们也想要查看训练好的网络中间层输出和卷积核上面表达了什么内容,这可以帮助我们思考CNN的内在机制、调整网络结构或者把这些可视化内容贴在论文当中辅助说明训练的效果等。

中间层和卷积核的可视化有多种方法,整理如下:

1. 以矩阵(matrix)格式手动输出图像:

用简单的LeNet网络训练MNIST数据集作为示例:

x = tf.placeholder(tf.float32, [None, 784]) 

x_image = tf.reshape(x, [-1,28,28,1])    
W_conv1 = weight_variable([5, 5, 1, 32]) # 第一个卷积层的32个卷积核  
b_conv1 = bias_variable([32])  
# 第一个卷积层:  
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1)  # 第一个池化层    

训练结束后,第一个卷积层共有32个5*5大小的卷积核:W_conv1,要可视化第10个卷积核:

from PIL import Image
import numpy as np
#from mnist_try001 import W_conv1

img1 = (W_conv1.eval()) # 将张量转换为numpy数组
W_conv1_10 = img1[:,:,:,9] 

W_conv1_10 = np.asmatrix(W_conv1_10) # 将数组转换为矩阵格式
W_conv1_10_visual = Image.fromarray(W_conv1_10 * 255.0 / W_conv1_10.max()) # 像素值归一化,Image.fromarray方法的输入范围是[0~255]
W_conv1_10_visual.show()

2. 通过反卷积方式输出中间层和卷积核图像:

import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

x = tf.placeholder(tf.float32, [None, 784])
mnist = input_data.read_data_sets('/TensorflowCode/MNIST_data', one_hot=True)

h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2) #14*14*64
# 可视化第二层输出的图像
input_image = mnist.train.images[100] # 输入一幅指定图像,mnist.train.images[100]尺寸为[784,],即1维:[1,784]
conv2 = sess.run(h_conv2, feed_dict={x:input_image}) # [64, 14, 14 ,1] 若前面网络中加入了dropout,这里的feed_dict中不要忘记加上keep_prob: 0.5
conv2 = sess.run(tf.reshape(conv2 , [64, 1, 14, 14]))
conv2 = np.sum(conv2,axis = 0) # 对中间层图像各通道求和,作为输出图像
h_conv1 = np.asmatrix(h_conv1) # 将conv2数组转换成矩阵格式
h_conv1 = Image.fromarray(h_conv1 * 255.0 / h_conv1.max()) # 矩阵数值归一化
h_conv1.show() # 输出14*14的灰度图像

可视化卷积核和上面的方法完全一样,把h_conv2改成卷积核就可以了(如W_conv1_10),可以同是输出多个卷积核。

中间层图像如下:(已经完全看不出是数字了)

使用Tensorflow实现可视化中间层和卷积层

或者用 matplotlib.pyplot代替上面的Image方法,可以直接输出彩色图像:

# 输出第一层的32个卷积核(5×5*32)
import matplotlib.pyplot as plt

input_image = mnist.train.images[100]
W_conv1 = sess.run(W_conv1, feed_dict={x:input_image})   
W_conv1 = sess.run(tf.reshape(conv1_16, [32, 1, 5, 5]))
fig1,ax1 = plt.subplots(nrows=1, ncols=32, figsize = (32,1))
for i in range(32):
  ax1[i].imshow( W_conv1[i][0])           
plt.title('W_conv1 32×5×5')
plt.show()

以上这篇使用Tensorflow实现可视化中间层和卷积层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:keras获得model中某一层的某一个Tensor的输出维度教程
下一篇:tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap