脚本专栏 
首页 > 脚本专栏 > 浏览文章

Tensorflow的梯度异步更新示例

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

背景:

先说一下应用吧,一般我们进行网络训练时,都有一个batchsize设置,也就是一个batch一个batch的更新梯度,能有这个batch的前提是这个batch中所有的图片的大小一致,这样才能组成一个placeholder。那么若一个网络对图片的输入没有要求,任意尺寸的都可以,但是我们又想一个batch一个batch的更新梯度怎么办呢?

操作如下:

先计算梯度:

# 模型部分
Optimizer = tf.train.GradientDescentOptimizer(1)
gradient = Optimizer.compute_gradients(loss)  # 每次计算所有变量的梯度
grads_holder = [(tf.placeholder(tf.float32, shape=g.get_shape()), v) for (g, v) in gradient]# 将每次计算的梯度保存
optm = Optimizer.apply_gradients(grads_holder) # 进行梯度更新

# 初始化部分
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

# 实际训练部分
grads = []         # 定义一个空的列表用于存储每次计算的梯度
for i in range(batchsize): # batchsize设置在这里
  x_i = ...       # 输入
  y_real = ...      # 标签
  grad_i = sess.run(gradient, feed_dict={inputs: x_i, outputs: y_real}) #梯度计算
  grads.append(grad_i)  # 梯度存储
# 定义一个空的字典用于存储,batchsize中所有梯度的和
grads_sum = {}     
# 将网络中每个需要更新梯度的变量都遍历一遍  
for i in range(len(grads_holder)): 
  k = grads_holder[i][0] # 得到该变量名
  # 将该变量名下的所有梯度求和,这里也可以求平均,求平均只需要除以batchsize
  grads_sum[k] = sum([g[i][0] for g in grads]) 
# 完成梯度更新
sess.run(optm,feed_dict=grads_sum) 

以上这篇Tensorflow的梯度异步更新示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:如何定义TensorFlow输入节点
下一篇:django 文件上传功能的相关实例代码(简单易懂)
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap