脚本专栏 
首页 > 脚本专栏 > 浏览文章

Pytorch之finetune使用详解

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:

1.固定参数

  for name, child in model.named_children():
    for param in child.parameters():
      param.requires_grad = False

后,只传入 需要反传的参数,否则会报错

filter(lambda param: param.requires_grad, model.parameters())

2.调低学习率,加快衰减

finetune是在预训练模型上进行微调,学习速率不能太大。

目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。

直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001

要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000

3. 固定bn或取消dropout:

batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值

def freeze_bn(self):
  for layer in self.modules():
    if isinstance(layer, nn.BatchNorm2d):
      layer.eval()

训练时,model.train()会修改模式,freeze_zn()应该在这里后面

4.过滤参数

训练时,对于优化器,应该只传入需要改变的参数,否则会报错

filter(lambda p: p.requires_grad, model.parameters())

以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:TensorFlow tensor的拼接实例
下一篇:python通过opencv实现图片裁剪原理解析
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap