python实现的Iou与Giou代码
(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )
最近看了网上很多博主写的iou实现方法,但Giou的代码似乎比较少,于是便自己写了一个,新手上路,如有错误请指正,话不多说,上代码:
def Iou(rec1,rec2): x1,x2,y1,y2 = rec1 #分别是第一个矩形左右上下的坐标 x3,x4,y3,y4 = rec2 #分别是第二个矩形左右上下的坐标 area_1 = (x2-x1)*(y1-y2) area_2 = (x4-x3)*(y3-y4) sum_area = area_1 + area_2 w1 = x2 - x1#第一个矩形的宽 w2 = x4 - x3#第二个矩形的宽 h1 = y1 - y2 h2 = y3 - y4 W = min(x1,x2,x3,x4)+w1+w2-max(x1,x2,x3,x4)#交叉部分的宽 H = min(y1,y2,y3,y4)+h1+h2-max(y1,y2,y3,y4)#交叉部分的高 Area = W*H#交叉的面积 Iou = Area/(sum_area-Area) return Iou def Giou(rec1,rec2): x1,x2,y1,y2 = rec1 #分别是第一个矩形左右上下的坐标 x3,x4,y3,y4 = rec2 iou = Iou(rec1,rec2) area_C = (max(x1,x2,x3,x4)-min(x1,x2,x3,x4))*(max(y1,y2,y3,y4)-min(y1,y2,y3,y4)) area_1 = (x2-x1)*(y1-y2) area_2 = (x4-x3)*(y3-y4) sum_area = area_1 + area_2 w1 = x2 - x1#第一个矩形的宽 w2 = x4 - x3#第二个矩形的宽 h1 = y1 - y2 h2 = y3 - y4 W = min(x1,x2,x3,x4)+w1+w2-max(x1,x2,x3,x4)#交叉部分的宽 H = min(y1,y2,y3,y4)+h1+h2-max(y1,y2,y3,y4)#交叉部分的高 Area = W*H#交叉的面积 add_area = sum_area - Area #两矩形并集的面积 end_area = (area_C - add_area)/area_C #(c/(AUB))/c的面积 giou = iou - end_area return giou rec1 = (27,47,130,90) rec2 = (30,68,150,110) iou = Iou(rec1,rec2) giou = Giou(rec1,rec2) print("Iou = {},Giou = {}".format(iou,giou))
以上这篇python实现的Iou与Giou代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
下一篇:Python 简单计算要求形状面积的实例