脚本专栏 
首页 > 脚本专栏 > 浏览文章

PyTorch加载预训练模型实例(pretrained)

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

使用预训练模型的代码如下:

# 加载预训练模型
 resNet50 = models.resnet50(pretrained=True)
 ResNet50 = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=2)

 # 读取参数
 pretrained_dict = resNet50.state_dict()
 model_dict = ResNet50.state_dict()

 # 将pretained_dict里不属于model_dict的键剔除掉
 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}

 # 更新现有的model_dict
 model_dict.update(pretrained_dict)

 # 加载真正需要的state_dict
 ResNet50.load_state_dict(model_dict)

以上这篇PyTorch加载预训练模型实例(pretrained)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:通过python实现windows桌面截图代码实例
下一篇:python 正则表达式参数替换实例详解
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap