脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch如何冻结某层参数的实现

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

在迁移学习finetune时我们通常需要冻结前几层的参数不参与训练,在Pytorch中的实现如下:

class Model(nn.Module):
 def __init__(self):
  super(Transfer_model, self).__init__()
  self.linear1 = nn.Linear(20, 50)
  self.linear2 = nn.Linear(50, 20)
  self.linear3 = nn.Linear(20, 2)

 def forward(self, x):
 pass

假如我们想要冻结linear1层,需要做如下操作:

model = Model()
# 这里是一般情况,共享层往往不止一层,所以做一个for循环
for para in model.linear1.parameters():
 para.requires_grad = False
# 假如真的只有一层也可以这样操作:
# model.linear1.weight.requires_grad = False

 最后我们需要将需要优化的参数传入优化器,不需要传入的参数过滤掉,所以要用到filter()函数。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1)

其它的博客中都没有讲解filter()函数的作用,在这里我简单讲一下有助于更好的理解。

filter(function, iterable)

  • function: 判断函数
  • iterable: 可迭代对象

filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。

filter()函数将requires_grad = True的参数传入优化器进行反向传播,requires_grad = False的则被过滤掉。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:如何给Python代码进行加密
下一篇:python标识符命名规范原理解析
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap