脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch:实现简单的GAN示例(MNIST数据集)

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 13 10:22:45 2018
@author: www
"""
 
import torch
from torch import nn
from torch.autograd import Variable
 
import torchvision.transforms as tfs
from torch.utils.data import DataLoader, sampler
from torchvision.datasets import MNIST
 
import numpy as np
 
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
 
plt.rcParams['figure.figsize'] = (10.0, 8.0) # 设置画图的尺寸
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
 
def show_images(images): # 定义画图工具
  images = np.reshape(images, [images.shape[0], -1])
  sqrtn = int(np.ceil(np.sqrt(images.shape[0])))
  sqrtimg = int(np.ceil(np.sqrt(images.shape[1])))
 
  fig = plt.figure(figsize=(sqrtn, sqrtn))
  gs = gridspec.GridSpec(sqrtn, sqrtn)
  gs.update(wspace=0.05, hspace=0.05)
 
  for i, img in enumerate(images):
    ax = plt.subplot(gs[i])
    plt.axis('off')
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.set_aspect('equal')
    plt.imshow(img.reshape([sqrtimg,sqrtimg]))
  return 
  
def preprocess_img(x):
  x = tfs.ToTensor()(x)
  return (x - 0.5) / 0.5
 
def deprocess_img(x):
  return (x + 1.0) / 2.0
 
class ChunkSampler(sampler.Sampler): # 定义一个取样的函数
  """Samples elements sequentially from some offset. 
  Arguments:
    num_samples: # of desired datapoints
    start: offset where we should start selecting from
  """
  def __init__(self, num_samples, start=0):
    self.num_samples = num_samples
    self.start = start
 
  def __iter__(self):
    return iter(range(self.start, self.start + self.num_samples))
 
  def __len__(self):
    return self.num_samples
    
NUM_TRAIN = 50000
NUM_VAL = 5000
 
NOISE_DIM = 96
batch_size = 128
 
train_set = MNIST('E:/data', train=True, transform=preprocess_img)
 
train_data = DataLoader(train_set, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0))
 
val_set = MNIST('E:/data', train=True, transform=preprocess_img)
 
val_data = DataLoader(val_set, batch_size=batch_size, sampler=ChunkSampler(NUM_VAL, NUM_TRAIN))
 
imgs = deprocess_img(train_data.__iter__().next()[0].view(batch_size, 784)).numpy().squeeze() # 可视化图片效果
show_images(imgs)
 
#判别网络
def discriminator():
  net = nn.Sequential(    
      nn.Linear(784, 256),
      nn.LeakyReLU(0.2),
      nn.Linear(256, 256),
      nn.LeakyReLU(0.2),
      nn.Linear(256, 1)
    )
  return net
  
#生成网络
def generator(noise_dim=NOISE_DIM):  
  net = nn.Sequential(
    nn.Linear(noise_dim, 1024),
    nn.ReLU(True),
    nn.Linear(1024, 1024),
    nn.ReLU(True),
    nn.Linear(1024, 784),
    nn.Tanh()
  )
  return net
  
#判别器的 loss 就是将真实数据的得分判断为 1,假的数据的得分判断为 0,而生成器的 loss 就是将假的数据判断为 1
 
bce_loss = nn.BCEWithLogitsLoss()#交叉熵损失函数
 
def discriminator_loss(logits_real, logits_fake): # 判别器的 loss
  size = logits_real.shape[0]
  true_labels = Variable(torch.ones(size, 1)).float()
  false_labels = Variable(torch.zeros(size, 1)).float()
  loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels)
  return loss
  
def generator_loss(logits_fake): # 生成器的 loss 
  size = logits_fake.shape[0]
  true_labels = Variable(torch.ones(size, 1)).float()
  loss = bce_loss(logits_fake, true_labels)
  return loss
  
# 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999
def get_optimizer(net):
  optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999))
  return optimizer
  
def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250, 
        noise_size=96, num_epochs=10):
  iter_count = 0
  for epoch in range(num_epochs):
    for x, _ in train_data:
      bs = x.shape[0]
      # 判别网络
      real_data = Variable(x).view(bs, -1) # 真实数据
      logits_real = D_net(real_data) # 判别网络得分
      
      sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均匀分布
      g_fake_seed = Variable(sample_noise)
      fake_images = G_net(g_fake_seed) # 生成的假的数据
      logits_fake = D_net(fake_images) # 判别网络得分
 
      d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss
      D_optimizer.zero_grad()
      d_total_error.backward()
      D_optimizer.step() # 优化判别网络
      
      # 生成网络
      g_fake_seed = Variable(sample_noise)
      fake_images = G_net(g_fake_seed) # 生成的假的数据
 
      gen_logits_fake = D_net(fake_images)
      g_error = generator_loss(gen_logits_fake) # 生成网络的 loss
      G_optimizer.zero_grad()
      g_error.backward()
      G_optimizer.step() # 优化生成网络
 
      if (iter_count % show_every == 0):
        print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.item(), g_error.item()))
        imgs_numpy = deprocess_img(fake_images.data.cpu().numpy())
        show_images(imgs_numpy[0:16])
        plt.show()
        print()
      iter_count += 1
 
D = discriminator()
G = generator()
 
D_optim = get_optimizer(D)
G_optim = get_optimizer(G)
 
train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)      

以上这篇pytorch:实现简单的GAN示例(MNIST数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:关于Pytorch的MNIST数据集的预处理详解
下一篇:详解pycharm连接不上mysql数据库的解决办法
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap