脚本专栏 
首页 > 脚本专栏 > 浏览文章

Pytorch evaluation每次运行结果不同的解决

(编辑:jimmy 日期: 2024/11/20 浏览:3 次 )

这两天跑测试图时,发现用同样的model,同样的测试图,每次运行结果不同;

经过漫长的debug发现,在net architure中有dropout,如下(4):

(conv_block): Sequential(
    (0): ReflectionPad2d((1, 1, 1, 1))
    (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
    (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False)
    (3): ReLU(inplace)
    (4): Dropout(p=0.5)
    (5): ReflectionPad2d((1, 1, 1, 1))
    (6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1))
    (7): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False)
   )

在跑evaluation的时候,因为dropout的存在,每次运行会随机丢一些中间结果,从而导致最终结果有差异;

可以在evaluation过程中,使用eval() class强制丢掉random的内容,code如下:

self.fake_B = self.netG.eval().forward(self.real_A) 

以上这篇Pytorch evaluation每次运行结果不同的解决就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:pytorch: Parameter 的数据结构实例
下一篇:Python测试线程应用程序过程解析
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap