python 利用已有Ner模型进行数据清洗合并代码
(编辑:jimmy 日期: 2024/11/20 浏览:3 次 )
我就废话不多说了,直接上代码吧!
# -*- coding: utf-8 -*- from kashgari.corpus import DataReader import re from tqdm import tqdm def cut_text(text, lenth): textArr = re.findall('.{' + str(lenth) + '}', text) textArr.append(text[(len(textArr) * lenth):]) return textArr def clean_data(source_file, target_file, ner_model): data_x, data_y = DataReader().read_conll_format_file(source_file) with tqdm(total=len(data_x)) as pbar: for idx, text_array in enumerate(data_x): if len(text_array) <= 100: ners = ner_model.predict([text_array]) ner = ners[0] else: texts = cut_text(''.join(text_array), 100) ners = [] for text in texts: ner = ner_model.predict([[char for char in text]]) ners = ners + ner[0] ner = ners # print('[-----------------------', idx, len(data_x)) # print(data_y[idx]) # print(ner) for jdx, t in enumerate(text_array): if ner[jdx].startswith('B') or ner[jdx].startswith('I') : if data_y[idx][jdx] == 'O': data_y[idx][jdx] = ner[jdx] # print(data_y[idx]) # print('-----------------------]') pbar.update(1) f = open(target_file, 'a', encoding="utf-8") for idx, text_array in enumerate(data_x): if idx != 0: f.writelines(['\n']) for jdx, t in enumerate(text_array): text = t + ' ' + data_y[idx][jdx] if idx == 0 and jdx == 0: text = text else: text = '\n' + text f.writelines([text]) f.close() data_x2, data_y2 = DataReader().read_conll_format_file(source_file) print(data_x == data_x2, len(data_y) == len(data_y2), '数据清洗完成')
# -*- coding: utf-8 -*- import kashgari from data_tools import clean_data time_ner = kashgari.utils.load_model('time_ner.h5') clean_data('./data/example.dev', 'example.dev', time_ner)
以上这篇python 利用已有Ner模型进行数据清洗合并代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
下一篇:Python Print实现在输出中插入变量的例子