脚本专栏 
首页 > 脚本专栏 > 浏览文章

基于python cut和qcut的用法及区别详解

(编辑:jimmy 日期: 2024/11/20 浏览:3 次 )

我就废话不多说了,直接上代码吧:

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
from numpy import nan as NA
from matplotlib import pyplot as plt
ages = [20,22,25,27,21,23,37,31,61,45,41,32]
#将所有的ages进行分组
bins = [18,25,35,60,100]
#使用pandas中的cut对年龄数据进行分组
cats = pd.cut(ages,bins)
#print(cats)
#调用pd.value_counts方法统计每个区间的个数
number=pd.value_counts(cats)
#print(pd.value_counts(cats))
#显示第几个区间index值
index=pd.cut(ages,bins).codes
#print(index)
#为分类出来的每一组年龄加上标签
group_names = ["Youth","YouthAdult","MiddleAged","Senior"]
personType=pd.cut(ages,bins,labels=group_names)
#print(personType)
plt.hist(personType)
#plt.show()
#cut和qcut的用法
data=[1,2,3,4,5,6,7,8,9,10]
result=pd.qcut(data,4)
print(' ',result)##qcut会将10个数据进行排序,然后再将data数据均分成四组
#统计落在每个区间的元素个数
print('dasdasdasdasdas:  ',pd.value_counts(result))
#qcut : 跟cut一样也可以自定义分位数(0到1之间的数值,包括端点)
results=pd.qcut(data,[0,0.1,0.5,0.9,1])
print('results:  ',results)
import numpy as np
import pandas as pd
data = np.random.rand(20)
print(data)
#用cut函数将一组数据分割成n份
#cut函数分割的方式:数据里的(最大值-最小值)/n=每个区间的间距
#利用数据中最大值和最小值的差除以分组数作为每一组数据的区间范围的差值
result = pd.cut(data,4,precision=2) #precision保留小数点的有效位数
print(result)
res_data=pd.value_counts(result)
print(res_data)

以上这篇基于python cut和qcut的用法及区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python实现简易淘宝购物
下一篇:Python调用graphviz绘制结构化图形网络示例
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap