深入理解NumPy简明教程---数组1
目前我的工作是将NumPy引入到Pyston中(一款Dropbox实现的Python编译器/解释器)。在工作过程中,我深入接触了NumPy源码,了解其实现并提交了PR修复NumPy的bug。在与NumPy源码以及NumPy开发者打交道的过程中,我发现当今中文NumPy教程大部分都是翻译或参考英文文档,因此导致了许多疏漏。比如NumPy数组中的broadcast功能,几乎所有中文文档都翻译为“广播”。而NumPy的开发者之一,回复到“broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含义)"。有鉴于此,我打算启动一个项目,以我对NumPy使用以及源码层面的了解编写一个系列的教程。
NumPy数组
NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:
- 实际的数据
- 描述这些数据的元数据
大部分操作仅针对于元数据,而不改变底层实际的数据。
关于NumPy数组有几点必需了解的:
- NumPy数组的下标从0开始。
- 同一个NumPy数组中所有元素的类型必须是相同的。
NumPy数组属性
在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
NumPy的数组中比较重要ndarray对象属性有:
- ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。
- ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。
- ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。
- ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。
- ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(float64占用64个bits,每个字节长度为8,所以64/8,占用8个字节),又如,一个元素类型为complex32的数组item属性为4(32/8)。
- ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。
创建数组
先来介绍创建数组。创建数组的方法有很多。如可以使用array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。
> from numpy import * > a = array( [2,3,4] ) > a array([2, 3, 4]) > a.dtype dtype('int32') > b = array([1.2, 3.5, 5.1]) > b.dtype dtype('float64')
使用array函数创建时,参数必须是由方括号括起来的列表,而不能使用多个数值作为参数调用array。
> a = array(1,2,3,4) # 错误 > a = array([1,2,3,4]) # 正确
可使用双重序列来表示二维的数组,三重序列表示三维数组,以此类推。
> b = array( [ (1.5,2,3), (4,5,6) ] ) > b array([[ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]])
可以在创建时显式指定数组中元素的类型
> c = array( [ [1,2], [3,4] ], dtype=complex) > c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
通常,刚开始时数组的元素未知,而数组的大小已知。因此,NumPy提供了一些使用占位符创建数组的函数。这些函数有助于满足除了数组扩展的需要,同时降低了高昂的运算开销。
用函数zeros可创建一个全是0的数组,用函数ones可创建一个全为1的数组,函数empty创建一个内容随机并且依赖与内存状态的数组。默认创建的数组类型(dtype)都是float64。
可以哟娜特d.dtype.itemsize来查看数组中元素占用的字节数目。
> d = zeros((3,4)) > d.dtype dtype('float64') > d array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) > d.dtype.itemsize 8
也可以自己制定数组中元素的类型
> ones( (2,3,4), dtype=int16 ) #手动指定数组中元素类型 array([[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]], dtype=int16) > empty((2,3)) array([[ 2.65565858e-316, 0.00000000e+000, 0.00000000e+000], [ 0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
NumPy提供一个类似arange的函数返回一个数列形式的数组:
> arange(10, 30, 5) array([10, 15, 20, 25])
以10开始,差值为5的等差数列。该函数不仅接受整数,还接受浮点参数:
> arange(0,2,0.5) array([ 0. , 0.5, 1. , 1.5])
当arange使用浮点数参数时,由于浮点数精度有限,通常无法预测获得的元素个数。因此,最好使用函数linspace去接收我们想要的元素个数来代替用range来指定步长。linespace用法如下,将在通用函数一节中详细介绍。
> numpy.linspace(-1, 0, 5) array([-1. , -0.75, -0.5 , -0.25, 0. ])
数组中的元素是通过下标来访问的,可以通过方括号括起一个下标来访问数组中单一一个元素,也可以以切片的形式访问数组中多个元素。关于切片访问,将在切片一节介绍。
知识点:NumPy中的数据类型
对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:
NumPy中的基本数据类型
NumPy类型转换方式如下:
> float64(42) 42.0 > int8(42.0) 42 > bool(42) True > bool(42.0) True > float(True) 1.0
许多函数的参数中可以指定参数的类型,当然,这个类型参数是可选的。如下:
> arange(7, dtype=uint16) array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)
输出数组
当输出一个数组时,NumPy以特定的布局用类似嵌套列表的形式显示:
- 第一行从左到右输出
- 每行依次自上而下输出
- 每个切片通过一个空行与下一个隔开
- 一维数组被打印成行,二维数组成矩阵,三维数组成矩阵列表。
> a = arange(6) # 1d array > print a [0 1 2 3 4 5] > b = arange(12).reshape(4,3) # 2d array > print b [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] > c = arange(24).reshape(2,3,4) # 3d array > print c [[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]]
reshape将在下一篇文章中介绍
如果一个数组太长,则NumPy自动省略中间部分而只打印两端的数据:
> print arange(10000) [ 0 1 2 ..., 9997 9998 9999] > print arange(10000).reshape(100,100) [[ 0 1 2 ..., 97 98 99] [ 100 101 102 ..., 197 198 199] [ 200 201 202 ..., 297 298 299] ..., [9700 9701 9702 ..., 9797 9798 9799] [9800 9801 9802 ..., 9897 9898 9899] [9900 9901 9902 ..., 9997 9998 9999]]
可通过设置printoptions参数来禁用NumPy的这种行为并强制打印整个数组。
set_printoptions(threshold='nan')
这样,输出时数组的所有元素都会显示出来。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
下一篇:更改Ubuntu默认python版本的两种方法python-> Anaconda