脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python实现以时间换空间的缓存替换算法

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

缓存是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度很快。缓存就是把一些数据暂时存放于某些地方,可能是内存,也有可能硬盘。

在使用Scrapy爬网站的时候,产生出来的附加产物,因为在Scrapy爬取的时候,CPU的运行时间紧迫度不高(访问频次太高容易被封禁),借此机会难得来上一下,让自己的内存解放一下。

算法原理:

通过将要缓存的数据用二进制展开,得到的二进制数据映射到缓存字段上,要检验是否已经缓存过,仅需要去查找对应的映射位置即可,如果全部匹配上,则已经缓存。

# 二进制就是个二叉树
# 如下面可以表示出来的数据有0, 1, 2, 3四个(两个树独立)

0 1
/ \ / \
0 1 0 1

因此对缓存的操作就转化为对二叉树的操作,添加和查找只要在二叉树上找到对应路径的node即可。

算法关键代码:

def _read_bit(self, data, position):
return (data  position) & 0x1
def _write_bit(self, data, position, value):
return data | value << position

实际使用效果如何呢"htmlcode">

Please select test mode:4
Please enter test times:1000
====================================================================================================
TEST RESULT::
====================================================================================================
set() bytecache
items 1000 1000
add(s) 0.0 0.0209999084473
read(s) 0.0 0.0149998664856
hits 1000 1000
missed 0 0
size 32992 56
add(s/item) 0.0 2.09999084473e-05
read(s/item) 0.0 2.09999084473e-05
====================================================================================================
size (set / bytecache): 589.142857143
add time (bytecache / set): N/A
read time (bytecache / set): N/A
====================================================================================================
...test fixed length & int data end...
====================================================================================================
TEST RESULT::
====================================================================================================
set() bytecache
items 1000 1000
add(s) 0.00100016593933 6.1740000248
read(s) 0.0 7.21300005913
hits 999 999
missed 0 0
size 32992 56
add(s/item) 1.00016593933e-06 0.0061740000248
read(s/item) 0.0 0.0061740000248
====================================================================================================
size (set / bytecache): 589.142857143
add time (bytecache / set): 6172.97568534
read time (bytecache / set): N/A
====================================================================================================
...test mutative length & string data end...
====================================================================================================
TEST RESULT::
====================================================================================================
set() bytecache
items 1000 1000
add(s) 0.0 0.513999938965
read(s) 0.0 0.421000003815
hits 999 999
missed 0 0
size 32992 56
add(s/item) 0.0 0.000513999938965
read(s/item) 0.0 0.000513999938965
====================================================================================================
size (set / bytecache): 589.142857143
add time (bytecache / set): N/A
read time (bytecache / set): N/A
====================================================================================================
...test Fixed length(64) & string data end...

测试下来,内存消耗控制的比较好,一直在56字节,而是用 set 的内存虽然也不是很大,当相较于 ByteCache 来说,则大上很多。

但 ByteCache 的方式来缓存,最大的问题是当碰到非常大的随机数据时,消耗时间会比较惊人。如下面这种随机长度的字符串缓存测试结果:

Please select test mode:2
Please enter test times:2000
====================================================================================================
TEST RESULT::
====================================================================================================
set() bytecache
items 2000 2000
add(s) 0.00400018692017 31.3759999275
read(s) 0.0 44.251999855
hits 1999 1999
missed 0 0
size 131296 56
add(s/item) 2.00009346008e-06 0.0156879999638
read(s/item) 0.0 0.0156879999638
====================================================================================================
size (set / bytecache): 2344.57142857
add time (bytecache / set): 7843.63344856
read time (bytecache / set): N/A
====================================================================================================
...test mutative length & string data end...

在2000个数据中,添加消耗31s,查找消耗44s,而 set 接近于0,单条数据也需要16ms(均值)才能完成读/写操作。

不过,正如开头说的,在紧迫度不是很高的Scrapy中,这个时间并不会太过于窘迫,更何况在Scrapy中,一般是用来缓存哈希后的数据,这些数据的一个重要特性是定长,定长在本缓存算法中还是表现不错的,在64位长度的时候,均值才0.5ms。而与此同时倒是能在大量缓存的时候,释放出比较客观的内存。

如果有更好的缓存算法能让速度在上新台阶,也是无比期待的。。。

总结:

1. 此方法的目标是用时间换取空间,切勿在时间紧迫度高的地方使用

2. 非常适用于大量定长,且数据本身比较小的情况下使用

3. 接2,非常不建议在大量不定长的数据,而且数据本身比较大的情况下使用

以上内容是小编给大家介绍的Python实现以时间换空间的缓存替换算法,希望对大家有所帮助!

上一篇:Python中使用OpenCV库来进行简单的气象学遥感影像计算
下一篇:Python使用爬虫猜密码
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap