脚本专栏 
首页 > 脚本专栏 > 浏览文章

使用Keras画神经网络准确性图教程

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

1.在搭建网络开始时,会调用到 keras.models的Sequential()方法,返回一个model参数表示模型

2.model参数里面有个fit()方法,用于把训练集传进网络。fit()返回一个参数,该参数包含训练集和验证集的准确性acc和错误值loss,用这些数据画成图表即可。

如:

history=model.fit(x_train, y_train, batch_size=32, epochs=5, validation_split=0.25) #获取数据
 
#########画图
acc = history.history['acc']  #获取训练集准确性数据
val_acc = history.history['val_acc'] #获取验证集准确性数据
loss = history.history['loss']   #获取训练集错误值数据
val_loss = history.history['val_loss'] #获取验证集错误值数据
epochs = range(1,len(acc)+1)
plt.plot(epochs,acc,'bo',label='Trainning acc')  #以epochs为横坐标,以训练集准确性为纵坐标
plt.plot(epochs,val_acc,'b',label='Vaildation acc') #以epochs为横坐标,以验证集准确性为纵坐标
plt.legend() #绘制图例,即标明图中的线段代表何种含义
 
plt.figure() #创建一个新的图表
plt.plot(epochs,loss,'bo',label='Trainning loss')
plt.plot(epochs,val_loss,'b',label='Vaildation loss')
plt.legend() ##绘制图例,即标明图中的线段代表何种含义
 
plt.show() #显示所有图表

得到效果:

使用Keras画神经网络准确性图教程

完整代码:

import keras
from keras.datasets import mnist
from keras.layers import Conv2D, MaxPool2D, Dense, Flatten,Dropout
from keras.models import Sequential
import matplotlib.pyplot as plt
 
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
x_train = x_train / 255.
x_test = x_test / 255.
 
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)
 
model = Sequential()
model.add(Conv2D(20,(5,5),strides=(1,1),input_shape=(28,28,1),padding='valid',activation='relu',kernel_initializer='uniform'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(64,(5,5),strides=(1,1),padding='valid',activation='relu',kernel_initializer='uniform'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Flatten())
model.add(Dense(500,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10,activation='softmax'))
model.compile('sgd', loss='categorical_crossentropy', metrics=['accuracy']) #随机梯度下降
 
history=model.fit(x_train, y_train, batch_size=32, epochs=5, validation_split=0.25) #获取数据
 
#########画图
acc = history.history['acc']  #获取训练集准确性数据
val_acc = history.history['val_acc'] #获取验证集准确性数据
loss = history.history['loss']   #获取训练集错误值数据
val_loss = history.history['val_loss'] #获取验证集错误值数据
epochs = range(1,len(acc)+1)
plt.plot(epochs,acc,'bo',label='Trainning acc')  #以epochs为横坐标,以训练集准确性为纵坐标
plt.plot(epochs,val_acc,'b',label='Vaildation acc') #以epochs为横坐标,以验证集准确性为纵坐标
plt.legend() #绘制图例,即标明图中的线段代表何种含义
 
plt.figure() #创建一个新的图表
plt.plot(epochs,loss,'bo',label='Trainning loss')
plt.plot(epochs,val_loss,'b',label='Vaildation loss')
plt.legend() ##绘制图例,即标明图中的线段代表何种含义

以上这篇使用Keras画神经网络准确性图教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python中wheel的用法整理
下一篇:keras绘制acc和loss曲线图实例
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap