脚本专栏 
首页 > 脚本专栏 > 浏览文章

keras绘制acc和loss曲线图实例

(编辑:jimmy 日期: 2024/11/19 浏览:3 次 )

我就废话不多说了,大家还是直接看代码吧!

#加载keras模块
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
import matplotlib.pyplot as plt
%matplotlib inline

#写一个LossHistory类,保存loss和acc
class LossHistory(keras.callbacks.Callback):
 def on_train_begin(self, logs={}):
  self.losses = {'batch':[], 'epoch':[]}
  self.accuracy = {'batch':[], 'epoch':[]}
  self.val_loss = {'batch':[], 'epoch':[]}
  self.val_acc = {'batch':[], 'epoch':[]}

 def on_batch_end(self, batch, logs={}):
  self.losses['batch'].append(logs.get('loss'))
  self.accuracy['batch'].append(logs.get('acc'))
  self.val_loss['batch'].append(logs.get('val_loss'))
  self.val_acc['batch'].append(logs.get('val_acc'))

 def on_epoch_end(self, batch, logs={}):
  self.losses['epoch'].append(logs.get('loss'))
  self.accuracy['epoch'].append(logs.get('acc'))
  self.val_loss['epoch'].append(logs.get('val_loss'))
  self.val_acc['epoch'].append(logs.get('val_acc'))

 def loss_plot(self, loss_type):
  iters = range(len(self.losses[loss_type]))
  plt.figure()
  # acc
  plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
  # loss
  plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
  if loss_type == 'epoch':
   # val_acc
   plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
   # val_loss
   plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
  plt.grid(True)
  plt.xlabel(loss_type)
  plt.ylabel('acc-loss')
  plt.legend(loc="upper right")
  plt.show()
#变量初始化
batch_size = 128 
nb_classes = 10
nb_epoch = 20

# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

#建立模型 使用Sequential()
model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

#打印模型
model.summary()

#训练与评估
#编译模型
model.compile(loss='categorical_crossentropy',
    optimizer=RMSprop(),
    metrics=['accuracy'])
#创建一个实例history
history = LossHistory()

#迭代训练(注意这个地方要加入callbacks)
model.fit(X_train, Y_train,
   batch_size=batch_size, nb_epoch=nb_epoch,
   verbose=1, 
   validation_data=(X_test, Y_test),
   callbacks=[history])

#模型评估
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

#绘制acc-loss曲线
history.loss_plot('epoch')

keras绘制acc和loss曲线图实例

补充知识:keras中自定义验证集的性能评估(ROC,AUC)

在keras中自带的性能评估有准确性以及loss,当需要以auc作为评价验证集的好坏时,就得自己写个评价函数了:

from sklearn.metrics import roc_auc_score
from keras import backend as K

# AUC for a binary classifier
def auc(y_true, y_pred):
 ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
 pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
 pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)
 binSizes = -(pfas[1:]-pfas[:-1])
 s = ptas*binSizes
 return K.sum(s, axis=0)
#------------------------------------------------------------------------------------
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
 y_pred = K.cast(y_pred >= threshold, 'float32')
 # N = total number of negative labels
 N = K.sum(1 - y_true)
 # FP = total number of false alerts, alerts from the negative class labels
 FP = K.sum(y_pred - y_pred * y_true)
 return FP/N
#-----------------------------------------------------------------------------------
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
 y_pred = K.cast(y_pred >= threshold, 'float32')
 # P = total number of positive labels
 P = K.sum(y_true)
 # TP = total number of correct alerts, alerts from the positive class labels
 TP = K.sum(y_pred * y_true)
 return TP/P
 
#接着在模型的compile中设置metrics
#如下例子,我用的是RNN做分类
from keras.models import Sequential
from keras.layers import Dense, Dropout
import keras
from keras.layers import GRU

model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features))) #masking用于变长序列输入
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
    return_state=False, go_backwards=False, stateful=False, unroll=False)) 
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
    optimizer='adam',
    metrics=[auc]) #写入自定义评价函数

接下来就自己作预测了...

方法二:

from sklearn.metrics import roc_auc_score
import keras
class RocAucMetricCallback(keras.callbacks.Callback):
 def __init__(self, predict_batch_size=1024, include_on_batch=False):
  super(RocAucMetricCallback, self).__init__()
  self.predict_batch_size=predict_batch_size
  self.include_on_batch=include_on_batch
 
 def on_batch_begin(self, batch, logs={}):
  pass
 
 def on_batch_end(self, batch, logs={}):
  if(self.include_on_batch):
   logs['roc_auc_val']=float('-inf')
   if(self.validation_data):
    logs['roc_auc_val']=roc_auc_score(self.validation_data[1], 
             self.model.predict(self.validation_data[0],
                  batch_size=self.predict_batch_size))
 def on_train_begin(self, logs={}):
  if not ('roc_auc_val' in self.params['metrics']):
   self.params['metrics'].append('roc_auc_val')
 
 def on_train_end(self, logs={}):
  pass
 
 def on_epoch_begin(self, epoch, logs={}):
  pass
 
 def on_epoch_end(self, epoch, logs={}):
  logs['roc_auc_val']=float('-inf')
  if(self.validation_data):
   logs['roc_auc_val']=roc_auc_score(self.validation_data[1], 
            self.model.predict(self.validation_data[0],
                 batch_size=self.predict_batch_size))
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import GRU
import keras
from keras.callbacks import EarlyStopping
from sklearn.metrics import roc_auc_score
from keras import metrics
 
cb = [
 my_callbacks.RocAucMetricCallback(), # include it before EarlyStopping!
 EarlyStopping(monitor='roc_auc_val',patience=300, verbose=2,mode='max')
]
model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features)))
# model.add(Embedding(input_dim=max_features+1, output_dim=64,mask_zero=True))
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
    return_state=False, go_backwards=False, stateful=False, unroll=False)) #input_shape=(max_lenth, max_features),
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
 
model.compile(loss='binary_crossentropy',
    optimizer='adam',
    metrics=[auc]) #这里就可以写其他评估标准
model.fit(x_train, y_train, batch_size=train_batch_size, epochs=training_iters, verbose=2,
   callbacks=cb,validation_split=0.2,
   shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)

亲测有效!

以上这篇keras绘制acc和loss曲线图实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:使用Keras画神经网络准确性图教程
下一篇:在tensorflow下利用plt画论文中loss,acc等曲线图实例
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap